

Draft Terms of Reference

Environmental Impact Study (EIS) York Road Environmental Design Study City of Guelph

Prepared for:

City of Guelph River Systems Advisory Committee (RSAC)

Prepared by:

Amec Foster Wheeler Dougan & Associates Matrix Solutions (including Parish Aquatic Services) Blackport and Associates

January 2016

Project No. TP115100

DRAFT TERMS OF REFERENCE ENVIRONMENTAL IMPACT STUDY (EIS) YORK ROAD ENVIRONMENTAL DESIGN STUDY CITY OF GUELPH

CITY OF GUELPH

Submitted to:

City of Guelph River Systems Advisory Committee

Submitted by:

Amec Foster Wheeler Dougan & Associates Matrix Solutions (including Parish Aquatic Services) Blackport and Associates

January 2016

TABLE OF CONTENTS

1. 2. 3. 4. 5. 6. 7.	PROJECT BACKGROUND AND STUDY APPROACH1AREA PLANNING CONTEXT1POLICIES AND LEGISLATIVE FRAMEWORK2ROLE OF THE RIVER SYSTEMS ADVISORY COMMITTEE3DESCRIPTION OF STUDY AREA3STUDY STAGING AND IMPLEMENTATION4STAGE 1 – BACKGROUND REVIEW47.1.Hydrogeology and Geology					
	7.2.	Hydrology and Hydraulics5	,			
	7.3.	Water Quality6	;			
	7.4.	Fluvial Geomorphology7	,			
	7.5.	Fisheries and Aquatic Habitat8	;			
	7.6.	Terrestrial Ecology9)			
	7.7.	Integrated Summary9)			
8.	STAGI 8.1.	E 2 – FIELD WORK INVESTIGATIONS9 Hydrogeology and Geology9	1233444 5 6 7 8 9 9 99 0 0 0 1 2 5 55 5 56			
	8.2.	Hydrology and Hydraulics10)			
	8.3.	Water Quality10)			
	8.4.	Fluvial Geomorphology10)			
	8.5.	Fisheries and Aquatic Habitat11				
	8.6.	Terrestrial Ecology12)			
	8.7.	Integrated Summary15	,			
9.	STAGI 9.1.	E 3 - IMPACT ASSESSMENT/MITIGATION FOR PREFERRED ALTERNATIVE15 Identification of a Preferred Alternative15				
	9.2.	Potential Impact and Mitigation Assessment15	;			
10. 11. 12.	1. REPORTING AND DOCUMENTATION					

List of Figures

- Figure 1 York Road from Wyndham Street to East City Limits Study Area
- Figure 2 York Road Environmental Design Study Area

List of Appendices

- Appendix A Clythe Creek Site Photographs
- Appendix B Technical Tables and Figures

1. PROJECT BACKGROUND AND STUDY APPROACH

The proposed York Road Environmental Design Study (YREDS) will be an important undertaking to support and assist with the implementation of the recommendations stemming from the 2007 York Road Improvements Class Environmental Assessment (EA), the limits of which are indicated in Figure 1. The original EA made a number of recommendations for roadway improvements along York Road, including road widening to the south for the study area (from Victoria Road to the East City Limits). The proposed road widening is required to assist the City of Guelph achieve its planning and development targets, in particular the proposed development within the Guelph Innovation District lands located to the south of York Road.

As noted within the original EA, the proposed roadway improvements were expected to impact the adjacent watercourse, Clythe Creek; as such, recommendations were made with respect to:

- Extension of the existing Clythe Creek Culvert crossing of York Road;
- Relocation of approximately 135 m +\- of the Clythe Creek Channel to accommodate the proposed road widening; and
- Implementation of riparian plantings to separate the widened roadway from the relocated Clythe Creek channel.

In order to support and assist with the implementation of the EA recommendations, it is necessary to provide further consideration of the numerous environmental, cultural, and engineering factors associated with the foregoing. The proposed York Road Environmental Design will address all of these considerations in greater detail, and ensure that proposed road widening is conducted in a responsible and well-planned manner.

A key component of the YREDS will be the completion of an Environmental Impact Study (EIS). This study is to include a background review of available data and reporting for the area, and undertake additional field work activities to further quantify and assess areas of concern or areas where missing or uncertain information has been noted. This environmental data will be used as part of the process of identifying a preferred alternative for the roadway and creek, and where necessary, to develop mitigation measures to reduce or eliminate environmental impacts.

2. AREA PLANNING CONTEXT

The Clythe Creek stream corridor is a significant natural area (City of Guelph Official Plan Schedule 10) that includes wetlands and a Special Study Area (City of Guelph Official Plan Schedule 1). The stream corridor is also part of the City's Natural Heritage System

The City of Guelph commenced preparing a Secondary Plan for the Guelph Innovation District (GID) in 2015. The City through completion of a three (3) phased Secondary Plan process with input from the public and numerous stakeholders including the Province, developed the "York District Preferred Land Use Scenario" which led to the preparation and approval of OPA 54 (Guelph Innovation District Secondary Plan) by City Council on May 12, 2014.

The Guelph Innovation District (GID) comprises 436 ha (1,077 acres) on Guelph's east side. It is bounded by York Road, Victoria Road South, the York-Watson Industrial Park and the City's southern boundary.

The GID is being planned as a compact mixed-use community that integrates an urban village with an employment area, strives to be carbon neutral and offers meaningful places to live, work, shop, play and learn in a setting rich in natural and cultural heritage. The Innovation District is

vital to meeting employment and housing targets consistent with Guelph's Growth Management Strategy and the Province's Growth Plan; supporting an economic cluster focused on greeneconomy and innovation sector jobs; and offering opportunities for integrated energy planning as part of the Community Energy Initiative. The City has developed principles and objectives in accordance with the foregoing.

3. POLICIES AND LEGISLATIVE FRAMEWORK

Current Official Plan, regulations, and policies include the following:

- Extension Urban Forest (OP Policy 6A.5):
 - Tree destruction or removal of trees on private property is regulated by the City's tree by-law (OP Policy 6A.5.1,City of Guelph, 2001)
 - A permit is required for destruction of trees on private property (Tree Bylaw Policy 2.2, City of Guelph, 2010b).
 - Vegetation Compensation Plans are required for all new development and site alterations involving the destruction of healthy non-invasive trees that cannot be retained (OP Policy 6A5.1, City of Guelph 2001).
- Environmental Study Requirements (OP Policy 6A.7):
 - To be prepared in accordance with the Official Plan (City of Guelph, 2001) where development is proposed within or adjacent to natural heritage features.
- Natural Heritage Strategy Designations applicable to the stream and 15 m stream corridor:
 - Natural Heritage System (OP Policy 2.4.14 and Schedule 10, City of Guelph, 2010a).
 - Significant Natural Area (OP Policy 6A.1 and 6A.2 and Schedule 10, City of Guelph, 2010a).
 - Warm water fish habitat (OP Policy 6A.1.1 and Schedule 10b, City of Guelph, 2010a).

Normally, development and site alteration is not permitted within the Natural Heritage System including minimum or established buffers (Policy 6A.1.2, City of Guelph, 2001). Development that may negatively affect the Natural Heritage System is subject to City approval. Permitted development and site alteration within and/or adjacent to natural heritage features are required to demonstrate, through an EIS to the satisfaction of the City, in consultation with the GRCA, the Province and Federal government, as applicable, that there will be no negative impacts on the natural heritage features and areas to be protected, or their ecological and hydrologic functions (City of Guelph, 2001). The EIS will also address any Provincial or Federal requirements as they relate to Species at Risk.

The City of Guelph source protection policies are incorporated into the Grand River Source Water Protection Plan and the Lake Erie Region Source Protection Plan, the latter of which received approval from the Ministry of the Environment and Climate Change in December 2015 and will commence on July 1, 2016. The City of Guelph was required to develop a Source Water Protection Plan due to the requirements of the Province's Clean Water Act. The City' Source Water Protection Policies serve to protect the 25 municipally owned wells, of which 21 are operable and to various amounts supply the City with its drinking water. Policies have been developed to address established drinking water threats, with specific focus on water quality threats. Water quantity threats are also addressed in the City's policies. The option exists to either manage the risk associated with drinking water threats activities or to prohibit the activity.

The Source Water Protection Plan Polices were developed with consideration of:

- Protection and safety of our drinking water supplies;
- Fairness to landowners;
- Impact on citizens;
- Ease of implementation;
- Consistency across boundaries;
- Cost to City and taxpayers;
- Constraint on economic development and existing businesses.

4. ROLE OF THE RIVER SYSTEMS ADVISORY COMMITTEE

As per the terms of reference (TOR) for the York Road Environmental Design Study, a TOR is to be developed for the EIS, in particular for the recommended field work investigations. This document is intended to address this requirement. It is expected that the City's River Systems Advisory Committee (RSAC) will review the TOR, and provide input and comments which will help to form the final TOR, prior to the Project Team proceeding with field work activities. It is expected that the findings of the EIS (including field work activities) will be presented to RSAC upon completion, with further input and comments to be incorporated into final reporting.

5. DESCRIPTION OF STUDY AREA

The approximate study area for the EIS is indicated in Figure 2, as per the original study TOR included in the original Request for Proposal (RFP). It is noted that the area indicated in Figure 2 is substantial ($4 \text{ km}^2 +$), and has been interpreted by the project team to reflect the area involved with background review work only. Detailed field work investigations would be scoped to the area immediately around the primary study area (i.e. York Road from Victoria Road to the East City Limits), and in particular those areas identified in the original (2007) EA as being impacted by the proposed widening of York Road.

The primary watercourse through the study area is Clythe Creek, which crosses York Road approximately 200 m +\- west of Watson Parkway (ref. Figure 2). Clythe Creek is an interesting watercourse within the City, as its headwaters are a coldwater stream that has historically sustained a trout population. It is feasible that at some point in time, the lower section of the creek also supported cold to cool water fish populations, however current temperature monitoring suggests this is no longer the case. Bands of wetland vegetation are found along the length of Clythe Creek. The abundance of groundwater, near or at the ground surface in this watershed plays a key role in influencing the composition and distribution of vegetation within the watershed.

Presently, the creek is highly altered, with numerous drop structures (many of which have cultural heritage implications, which must be assessed as part of the overall Environmental Design Study) and on-line ponds (or over-widened pools) that restrict fish passage and warm the water. Clythe Creek is further constrained by the available area between York Road and two large on-line ponds (referred to as the Reformatory Ponds). Appendix A includes a photographic inventory of Clythe Creek.

In addition to Clythe Creek, consideration must also be given to Hadati Creek, which drains in an easterly direction along Elizabeth Street before outletting across York Road to Clythe Creek. Although less of a focus than Clythe Creek, the section of Hadati Creek between Industrial Street and Clythe Creek will also be assessed as part of the EIS (with respect to hydrology, geomorphology, and fisheries considerations specifically), to take into consideration the City's

proposed stormwater management and conveyance works upstream of this point along Elizabeth Street. This includes a trunk storm sewer along Elizabeth Street (partially constructed) which is intended to ultimately divert flows from an existing over-capacity storm sewer in the lower Ward One area.

6. STUDY STAGING AND IMPLEMENTATION

The following study staging and implementation process is envisioned for this study:

- Stage 1 Background Review
- Stage 2 Field Work Investigations
- Stage 3 Impact Assessment/Mitigation and Final Management Strategy

7. STAGE 1 – BACKGROUND REVIEW

Stage 1 involves an assessment of multiple environmental disciplines, integrated to develop an improved understanding of existing environmental conditions within the study area. The disciplines considered as part of this background review includes:

- Hydrogeology and Geology
- Hydrology and Hydraulics
- Water Quality
- Fluvial Geomorphology
- Fisheries and Aquatic Habitat
- Terrestrial Ecology

The background review process is intended to ensure that the history of the study area is fully understood, and that any previously identified constraints or concerns are understood and accounted prior to proceeding to Stage 2 (Field Work Investigations). In this way field investigations can be suitably scoped and focused upon areas of particular sensitivity, or where available information is lacking.

7.1. Hydrogeology and Geology

The groundwater flow system within the study area will be controlled by the local and more regional geologic setting including the surficial geology, the overburden thickness and related stratigraphy, the characteristics of the shallow underlying bedrock and the bedrock topography.

The surficial geology (Quaternary Geology – Figure B1 in Appendix B) generally indicates the potential for recharge and potential linkage to surface water features. A significant portion of the study area consists of more permeable sand and gravel glaciofluvial deposits. In addition the overburden thickness (Figure B2 in Appendix B) is generally less than 5 metres thus allowing a more direct connection to the underlying bedrock. The underlying bedrock consists of the dolostone of the Guelph Formation. The upper portion of the bedrock is expected to have a relatively high permeability as well. Portions of the Clythe Creek within the study area appear to be in direct contact with the bedrock. This combination of overburden and bedrock hydrostratigraphy provides for a significant groundwater-surface water connection.

Various regional hydrogeologic studies including the Eramosa-Blue Springs Subwatershed Study (Beak International and Aquafor Beech Limited, 1999) and the City of Guelph Groundwater

Resources Study for the Northeast Quadrant (Jagger Hims Limited, 1995) indicate the shallow groundwater flow to be generally from northeast to southwest. This flow correlates well with the general regional surficial topography as well as with the bedrock topography. A significant bedrock channel originates to the northeast and appears to intersect Clythe Creek within and adjacent to the study area (Figure B3 in Appendix B). This bedrock channel may act to direct shallow bedrock groundwater to the study area and provide for a significant groundwater discharge potential.

A detailed research study immediately north of the study area by Hailey Ashworth at the University of Guelph (Groundwater-Surface Water Interactions and Thermal Regime of Clythe Creek, Guelph Ontario: Threats and Opportunities for Restoration - M.Asc. Thesis, 2012) presents findings supporting the groundwater discharge potential within and adjacent to Clythe Creek.

A natural heritage assessment carried out at the Guelph Correctional Centre (Natural Resource Solutions Inc., January 2013) presents significant observations of water-cress within the study area indicating groundwater discharge. This study also notes shallow groundwater conditions within the city park.

Measurements and observations of the groundwater water table at or near the ground surface have been presented in various hydrogeologic studies in support of development adjacent to the study area along Watson Parkway.

7.2. Hydrology and Hydraulics

Hydrology

With respect to watershed hydrology, the approved frequency flows for Clythe Creek (2 through 100 year peak flows) are currently sourced from a MIDUSS model using design storms (Gamsby & Mannerow, 2006), while Regulatory Event flows (Regional Storm – Hurricane Hazel) are sourced from a GAWSER model (Schroeter & Associates, 1988). The GRCA has noted the need for review, given that the 100-year storm peak flow is greater than that for the Regulatory Event (Hurricane Hazel).

Separate, more refined hydrologic modelling using MIDUSS and design storms has also been completed for Hadati Creek (a tributary of Clythe Creek) to support a study on channel improvements (Gamsby & Mannerow, 2003).

In addition to the foregoing, Amec Foster Wheeler has undertaken a number of different hydrologic modelling assessments within the Clythe Creek watershed, all using the integrated hydrologic-hydraulic modelling platform of PCSWMM (which uses the US-EPA SWMM computational engine). This includes hydrologic modelling of local sewersheds for the City's Stormwater Management Master Plan (2012), modelling of the majority of Hadati Creek to support the design of the Elizabeth Street trunk storm sewer (2015), and on-going stormwater management and hydrologic modelling support for the GID area to the south of York Road (2015, on-going). The first two modelling assessments have used design storm methodology; the latter modelling work for the GID area (on-going) will employ continuous simulation.

Based on the foregoing, it is considered necessary to generate an updated, integrated hydrologic modelling approach that reflects current land use and stormwater management controls (including recent development within the Watson Parkway area) into a single modelling platform. An integrated PCSWMM model will be developed as part of this study accordingly. While it is anticipated that design storms will be employed for the current study, the model can be run in continuous simulation mode if required. The current hydrologic modelling scope does not include the incorporation of a groundwater component to the modelling; the modelling would reflect

surface water hydrology only. Notwithstanding, it would be possible to update PCSWMM to include a groundwater component in the future.

The base existing conditions modelling will be updated in order to assess the impacts of the proposed widening of York Road and associated stormwater management strategies. PCSWMM includes a full Low Impact Development/Best Management Practices (LID/BMPs) toolkit, which will facilitate the consideration of these measures, if determined to be appropriate.

Hydraulics

For Clythe Creek, a HEC-RAS hydraulic model is available from the GRCA, which has been incrementally updated (most recently in 2007) to reflect changes in hydraulics structures and development, particularly in the Watson Parkway area. The model extends from 500 m +\- upstream of Watson Road to the confluence with the Eramosa River, with fixed water levels specified for the model boundary condition, based on the expected frequency levels within the Eramosa River.

For Hadati Creek, a HEC2 hydraulic model was developed as part of the 2003 Channel Improvements Study (Gamsby & Mannerow).

For the purposes of the current study, no significant changes are envisioned for these hydraulic models, beyond localized channel geometry updates as required based on the results of the additional survey to be completed as part of field work activities (refer to Sections 8.2 and 8.4). Updated peak flow data from the hydrologic modelling effort will be employed to verify the expected change in flood levels (if any), and to verify the expected impacts to York Road (i.e. frequency of expected roadway overtopping). This hydraulic modelling will also be used as required to assess the expected impacts of channel re-alignment and road widening on floodplain extents and depths, to ensure that there are no negative impacts.

7.3. Water Quality

Water quality sampling data is more readily available for larger scale studies for the Speed and Eramosa Rivers. Such information can be found in Beak International and Aquafor Beech (1999). A more general characterization of the overall watershed can be found in the City of Guelph's River System Management Report (Weinstein Leeming + Associates, 1993). More limited information is available for watercourses within the study area (i.e. Clythe Creek). No water quality sampling information was found for Hadati Creek.

A group of University of Waterloo 4th year students (2007) conducted water quality sampling along Clythe Creek as part of their overall assessment of the watercourse. This included sampling for biochemical oxygen demand (BOD₅), nitrate, phosphate, and dissolved oxygen (DO). Concentrations of phosphate were found to be below the Provincial Water Quality Objective (PWQO). DO concentrations ranged between 7 and 10 mg/L, which is above the minimum PWQO of 6 mg/L for cold water habitat, based on a water temperature of approximately 15°C.

Dissolved oxygen (DO) sampling was completed by Ashworth (2012) using a hand-held probe at 12 different locations along Clythe Creek on five (5) different days. Values ranged between 5 and 10 mg/L, which is consistent with minimum Provincial standards (5-8 mg/L for warm water biota, 4-7 mg/L for cold water biota). Lower values of DO were typically found around a wetland and SWM facility outlet.

7.4. Fluvial Geomorphology

Previous Studies

While numerous reports have been prepared within the vicinity of the Clythe Creek-York Road study area, information on the fluvial geomorphology (the study of the form and function of stream channels through the interaction between water and sediment transport) and existing conditions of the area is lacking and often outdated leading to numerous opportunities as well as constraints moving forward.

Prior to the initiation of the geomorphic field assessment, a review of background reports and previous studies was conducted to determine any relevant information that may be applicable to this specific study. This background review was intended to identify any reaches that have been delineated and studied by others such that redundancy would not occur. Watershed-based studies (e.g., Ecologistics, 1998 and Beak International and Aquafor Beech, 1999) have been completed during the last few decades that report the state of the stream's health, understanding the available geomorphic information and areas where updates are required and gaps to be filled will be valid.

Overall, no study was able to provide a detailed characterization of the entire subwatershed; however site specific information on channel dimensions and characteristics were obtained for several locations along the channel and in relation to the current study area adjacent to York Road. Several conceptual channel designs have also been created for Clythe Creek as a result of the proposed York Road widening.

A historical aerial image from 1930 was obtained for the study area during the background review process and was used to infer past and present land uses within the area. This aerial image indicates that the majority of the existing site features were present at that time, with the exception of the reformatory ponds (both north and south).

Reach Break Analysis

Reaches are lengths of channel (typically 200 m to 2 km) that display similarity with respect to valley setting, planform, floodplain materials, and land-use/cover. Reach length will vary with channel scale since the morphology of low-order watercourses will vary over a smaller distance than those of higher-order watercourses. At the reach scale, characteristics of the stream corridor exert a direct influence on channel form, function and processes.

Within the Clythe Creek Subwatershed Overview (Ecologistics, 1998), ten reaches were identified along the watercourse based on habitat characteristics. Of these reaches, two (2) are located within the study area. A summary figure (Figure B4)and table (Table B1) have been included in Appendix B for reference. It is likely that these reach breaks will be modified as part of the current study with further site reconnaissance and field work. Generally, the upper reach section (C9) is narrower and more sloped, with more online weir structures, than the lower reach section (C10) downstream of the existing Jaycees Park, which is much wider and stagnant, with cloudier/more turbid water.

Field Reconnaissance

Site reconnaissance was performed on December 22, 2015 by Matrix Solutions. The intent of the visit was to observe existing conditions in order to better guide the development of detailed field work and ultimately the conceptual channel design. A photographic inventory containing geomorphic observations has been compiled in Appendix A.

The section of Clythe Creek that is in the study area flows for approximately 950 m adjacent to the south-east side of York Road, between Industrial Avenue and Watson Parkway, before changing direction to flow south east to confluence with the Eramosa River. Based on the December 22 site reconnaissance, this section of channel can be sub-divided into two distinct channel reaches based on overall channel gradient and cross section dimensions. The reach divide is located at the Historical Stone Arch Bridge that acts as the main entryway to the Former Guelph Correctional Facility.

From York Road downstream to the Historical Stone Arch Bridge, the channel is 2 - 3 m wide and 0.5 m deep at bankfull. The gradient is low to moderate, and is controlled by a series of weir structures. Channel planform is sinuous and banks are protected with stone. Water within the channel is moderately turbid and multiple occurrences of water cress and cattails were observed growing. A groundwater fed tributary enters the channel approximately 140 m upstream from the historic bridge. A pool-riffle morphology was not apparent, and only one true riffle feature was observed immediately downstream from the York Road crossing.

Downstream from the historical stone arch bridge, the channel widens to 4-5 m at pinch points to 15-18 m at ponded sections. Multiple channel development, due to the introduction of aesthetic islands attributes in some instances to the widened channel. Bankfull depth was not able to be determined. The channel is generally straight, with low gradient and stone protection along the banks. Similarly with upstream, multiple weir structures are present along with the occurrence of pedestrian bridges and culvert crossings. Beaver activity was also observed between the Industrial Ponds and the confluence with the Eramosa River.

7.5. Fisheries and Aquatic Habitat

The habitat characteristics and fish communities of Clythe Creek and Hadati Creek within the study area were documented during the preparation of the environmental assessment for the widening of York Road (Natural Resource Solutions, 2006). The stream habitats have been extensively altered. The downstream portion of the study area, including the north 'Reformatory' pond, is accessible to fish from the Eramosa River. The weir upstream from the Innovation Lands driveway blocks upstream fish migration.

Electrofishing in Clythe Creek has resulted in the capture of warm water non-game species. Greenside Darter (Etheostoma blennioides) is considered a species of special concern under the Species at Risk Act, but was assessed to be not at risk in the last (November 2006) COSEWIC assessment (<u>http://www.registrelep-sararegistry.gc.ca/species/speciesDetails_e.cfm?sid=99;</u> accessed January 4, 2016). Centrarchids are known to be present in the ponds.

There is a considerable amount of water temperature information for Clythe Creek including temperature surveys by Trout Unlimited in 2006 and 2007 and by H. Ashworth in 2011 and 2012 as part of her M.Sc. thesis work at the University of Guelph. Additional, more recent temperature data will be provided by Trout Unlimited Canada (J. Imhof, personal communication). The data reviewed to date indicate that summer water temperatures in Clythe Creek within and immediately upstream from the study area are in the range that is typically associated with warm water or warm-cool water fish communities.

Two cooler tributaries have been identified within the study area. One of these discharges directly to Clythe Creek upstream from the connection with the north Reformatory Pond and the second discharges to the pond itself. The latter, therefore, has little or no influence on the temperature of Clythe Creek.

7.6. Terrestrial Ecology

As part of the background review for this project, available information with respect to natural heritage information (as listed in Section 12 – references) have been reviewed for relevant information. In addition to those sources listed in Section 12, the project team has completed a Natural Heritage Information Centre (NHIC) database query, as well as consulting with the Guelph District Ministry of Natural Resources and Forestry (MNRF) for local species at risk (SAR) information, including the City of Guelph's Municipal List of SAR. Information gathered in this ongoing phase will provide surveyors with an initial understanding of the YREDS area, facilitate decision-making during the study, and be incorporated into reporting.

A preliminary review of the background documents indicates records for 22 vascular plant species and 67 wildlife species of significance locally, regionally, and/or provincially. It should be noted that the scale of these studies are often broader than the limits of the current study area and serve only to flag potential species during the forthcoming field investigations. Several Key species were recorded near or within the YREDS area; notably: Snapping Turtle (Chelydra serpentina) and Eastern Milksnake (Lampropeltis Triangulum). Both are included in the Guelph District OMNRF's Species at Risk Records accessed on October 27, 2015, as well as the City of Guelph Municipal List (2015), and Ontario Reptile and Amphibian Atlas (Ontario Nature, 2015). Since both of these species are considered Special Concern Provincially, turtle surveys and Eastern Milksnake surveys are necessary.

7.7. Integrated Summary

Based on the background review process, it is understood that there have been a number of studies completed previously for the current study area. These studies have assisted team members in gaining an initial understanding of the characteristics of the study area, and in identifying analyses and tasks that have been previously completed which do not need to be repeated. Conversely, the background review process will guide the development of the field work investigations (Section 8), by identifying those data and knowledge gaps that exist and should be addressed in order to ensure a fulsome environmental characterization. Proposed field work investigations are discussed in greater detail in Section 8.

8. STAGE 2 – FIELD WORK INVESTIGATIONS

8.1. Hydrogeology and Geology

Based on the scope of the current assessment, and the available background information and modelling, no hydrogeologic or geologic field work activities are proposed as part of the current EIS. A limited spot baseflow monitoring program is proposed in conjunction with the Fluvial Geomorphology field work program (Section 8.4). This monitoring program will be used to estimate groundwater discharge contributions to baseflow. A more detailed site specific assessment of groundwater levels and the potential for upward hydraulic gradients should be carried out as part of a future field program supporting detailed design (beyond the scope of the current assessment).

8.2. Hydrology and Hydraulics

Based on discussions with City staff and staff from the GRCA, no hydrologic field work activities are proposed as part of the current EIS. A flow monitoring program was originally envisioned by the City as part of this study, however it has been agreed that this program will not be conducted as part of this study, primarily due to constraints with respect to the project schedule, and the availability of City monitoring equipment. As such, hydrologic modelling will be validated using previously completed modelling (as noted in Section 7.2) and unitary flow comparisons to similar watersheds in other jurisdictions. It is considered that this approach is defensible and appropriate for the current study purposes.

Spot flow measurements are to be completed as part of the Hydrogeology and Geology program (Section 8.1) and Fluvial Geomorphology program (Section 8.4). This information will be used where feasible as part of the future hydrologic modelling validation work.

With respect to channel hydraulics, an updated topographic survey will be conducted for selected sections of Clythe Creek to support updated hydraulic modelling and design work. No additional topographic survey is proposed for Hadati Creek, as the channel geometry available within the existing hydraulic modelling is considered sufficient for study purposes. A topographic survey for the York Road right-of-way has been previously completed by the City of Guelph and will be used as part of this study.

8.3. Water Quality

No specific water quality testing or field work is proposed as part of the current EIS. It is not considered that additional sampling information would impact upon the likely mitigation strategy for the proposed roadway widening given the relatively minor contributing drainage area in this case. Water quality impacts associated with the proposed road widening will be addressed directly as part of the Environmental Design Study, specifically Stage 3 (Impact Assessment/Mitigation for Preferred Alternative).

8.4. Fluvial Geomorphology

In order to fill gaps in the fluvial geomorphic understanding of the study area, a detailed field program is required. Information gathered from the proposed fluvial geomorphic field program will provide quantitative data on channel processes which will be valuable in the development of a conceptual design; however, the data may or may not be sufficient to support a detailed design.

Rapid Field Assessments

To further confirm and refine results of the desktop analyses, rapid field assessments (i.e., the Rapid Geomorphic Assessment and Rapid Stream Assessment Technique) and additional field reconnaissance will be conducted to confirm the reach setting and the dominant geomorphic forces impacting Clythe Creek adjacent to York Road. During this evaluation, areas of active channel adjustments (e.g., erosion, deposition) will be confirmed. Measurements of pool depth (to provide insight on scour potential) and depth measurements to channel bed in the area of the weirs would be completed. An inventory of all weir structures will be compiled and crossing assessments completed for all bridges and culverts.

Detailed Field Data Collection

In order to better quantify channel dynamics, a detailed field assessment of the study reaches are required. The field work would follow standard field protocols and would include installation of 2

monitoring cross sections as well as 8 additional (non-monumented) bankfull cross-sections, a longitudinal profile survey from York Road to the Eramosa River confluence, characterization of the bed and banks and documentation of any other features that may be affecting flow and sediment movement (i.e., weir structures, tributaries, stormwater outflows). This survey would be co-ordinated with the overall topographic survey work described in Section 8.2 to avoid a duplication of effort.

A limited spot flow monitoring program will be carried out for two purposes; to measure baseflow (low flows) to help characterize groundwater and surface water interactions and existing aquatic habitat (as per Section 8.1), and to measure wet weather flows in Clythe Creek and through all connecting streams and channels. The spot baseflow monitoring program will be carried out during the summer months following a suitable period without precipitation. The wet weather flow monitoring will completed during the spring freshet if possible. Bankfull flow conditions will be targeted if possible.

Hadati Creek

While the primary focus of the fluvial geomorphology field work will be on Clythe Creek, given the direct impacts to York Road, additional field work will be conducted on Hadati Creek to support the proposed upstream flow diversion assessment (Elizabeth Street trunk storm sewer and upstream flow splitter).

The Hadati Creek Characterization will include a reach walk from Elizabeth Street and Industrial Avenue to the confluence with Clythe Creek. During the walk, both the Rapid Geomorphic Assessment and Rapid Stream Assessment Technique will be carried out in order to identify dominant factors contributing to existing channel form and function as well as overall channel health. Spotflow measurements will be conducted within the reach and a representative cross section measured in order to identify bankfull channel dimensions. This work will occur simultaneously with the Clythe Creek assessments.

8.5. Fisheries and Aquatic Habitat

Fish Habitat

The habitat in Clythe Creek will be characterized from the Eramosa River upstream to the railway crossing north of York Road. The habitat in Hadati Creek will be characterized from its confluence with Clythe Creek upstream to Elizabeth Street (i.e. 50 m +\- east of Industrial Street). Parameters documented will include channel form and dimensions, substrate, barriers to fish movement and indicators of groundwater discharge (i.e. seepage areas, watercress). The area characterized will include the Industrial Ponds, and the nearshore habitat along the north side of the north reformatory pond, adjacent to Clythe Creek. Existing information will be relied upon to characterize the two coolwater 'tributaries' that enter from the south and the other portions of the reformatory ponds.

Fish Community

No fish sampling is proposed in Clythe Creek or any of the ponds. The assessment will rely on existing information with respect to the fish species present in those areas. Electrofishing will be conducted in Hadati Creek between York Road and Elizabeth Street to characterize the fish community.

Northern Pike Spawning Survey

Northern Pike (Esox lucius) are known to spawn in a wetland area beside the Eramosa River a short distance upstream from its confluence with Clythe Creek. Based on our current knowledge

of the study area, it is possible that Northern Pike spawning habitat also exists in the lower reaches of Clythe Creek, particularly in the Industrial ponds. Therefore a Northern Pike spawning survey (visual search) will be undertaken in the early spring (late March – early April) when spawning is occurring at the other known spawning site.

Water Temperature

No additional water temperature monitoring is proposed. The study will rely on existing information, which is considerable.

8.6. Terrestrial Ecology

Surveys will include a Vegetation Assessment including Ecological Land Classification (ELC) and a vegetation inventory, tree inventory and hazard assessment, breeding bird surveys, turtle surveys, Eastern Milksnake surveys, Significant Wildlife Habitat (SWH) screening, and Species at Risk (SAR) screening. Incidental wildlife observations will be recorded as part of all field surveys. A summary of all field surveys and their timing is presented in Table 10.1.

Vegetation Field Investigations

Prompt initiation of seasonal field studies will be essential for study timing. Site investigations will be conducted by skilled field staff and will, at a minimum, include: Species at Risk (SAR) surveys, floral, faunal & ELC surveys, and a tree inventory and hazard Assessment.

The following vegetation field surveys are recommended within the York Road Environmental Design Study (YREDS) area, which includes adjacent lands (to 120 metres as per the PPS (2014)):

- Ecological Land Classification (ELC) Confirmation and refinement of previously identified (NRSI 2013) ELC communities within the YREDS area using Lee et al. (1998), including characterization of soils. Polygons contiguous with and, extending beyond, the YREDS area will be surveyed in entirety to ensure the accurate characterization.
- Vegetation Inventory conduct spring, summer, and fall vegetation inventories for the YREDS area to update existing vegetation inventories and determine if locally or regionally significant species are present.
- Tree Inventory and hazard assessment the existing tree inventory (NRSI 2006) will be reviewed and updated through field investigations to determine which trees should be retained based on their health and hazard potential, or appropriate mitigation and compensation measures. Where necessary, trees will be tagged and located using a high-accuracy Trimble GeoXH GPS unit.
- Species at Risk (SAR) all habitats and observations will be screened against the City of Guelph Municipal List of Species at Risk provided by Guelph District MNRF (September 2015). Some SAR (Endangered and Threatened) have specialized survey protocols required to detect their presence. Therefore, for any SAR that are not identified in the background review or during 2016 field investigations but have potentially suitable habitat found within the YREDS sarea, specialized survey protocols for detection will be recommended for the future (refer to the Potential Additional Field Investigations discussion within this section).
- Significant Wildlife Habitat (SWH) screening during field investigations, all habitats within the YREDS area will be screened against criteria outlined in the Significant Wildlife Habitat Technical Guide (OMNR 2000) and the Significant Wildlife Habitat Criteria Schedules for Ecoregion 6E (OMNRF 2015) to determine if rare vegetation communities are present. This will include searching for any Special Concern species (not covered under the ESA (2007)) and those with provincial Sranks of S1 to S3.

Wildlife Field Investigations

The following wildlife field surveys are recommended for the YREDS area, which includes adjacent lands (to 120 metres as per the PPS (2014)). The field surveys are recommended owing to routine "due diligence" as well as from information gleaned from background sources (see above).

- Breeding bird surveys following protocols outlined in the Ontario Breeding Bird Atlas (OBBA 2001). These surveys would take place from May 24 to July 10, with a minimum of two surveys taking place at least seven days apart; they will occur between sunrise and approximately 10:00 a.m. and under suitable weather conditions (i.e. light winds, good visibility, and no heavy rain).
- Nocturnal Amphibian Surveys following protocols outlined in the Ontario Marsh Monitoring Program (BSC 2003). At least three surveys would take place from April to June, with at least two weeks between surveys. The surveys would be conducted between sunset and midnight, and under suitable weather conditions (i.e. light winds, no heavy rain, and minimum temperatures of 5℃, 10℃, and 17℃ for the April, May, and June surveys, respectively.
- Turtle surveys following general protocols from a number of sources; these would including basking surveys as well as nesting surveys and road mortality surveys. Basking turtles would occur from mid-April to mid-June, with at least three surveys undertaken; they would occur between mid-morning and late afternoon during warm, sunny weather. High quality optics would be used to scan basking sites (e.g. logs, rocks) for turtles, and the number, species, and locations would be documented. Nesting surveys would be undertaken in late May to early June between dawn and mid-morning, especially within 24 hours of rain when females are more likely to initiate nesting activities; these surveys would take place at any nesting sites (sand and gravel areas with a southerly aspect in proximity to the ponds and creek) that are identified in the YREDS area. Further nest checks could be undertaken in August and September to check for signs of the emergence of young turtles (e.g. eggs shells, signs of nest depredation). Road mortality surveys would be conducted concurrently with any basking or nesting surveys, and would involve checking both sides of York Road for any dead turtles.
- Eastern Milksnake surveys following protocols from the Guelph District MNRF (OMNR 2013). These surveys would involve active hand searches over the entire YREDS area, with at least three surveys done a minimum of two weeks apart from late April to mid-June; the surveys would be conducted under suitable weather conditions (e.g. sunny and temperatures of at least 8°C (or, if overcast, at least 15°C). Note that this protocol does not recommend the use of cover boards unless they have been in place at least two years.
- Significant Wildlife Habitat (SWH) screening during field investigations, all habitats within the YREDS area will be screened against criteria outlined in the Significant Wildlife Habitat Technical Guide (OMNR 2000) and the Significant Wildlife Habitat Criteria Schedules for Ecoregion 6E (OMNRF 2015). This will include searching for any Special Concern species (not covered under the ESA (2007)) and those with provincial Sranks of S1 to S3.
- Species at Risk (SAR) screening all habitats and observations will be screened against the City of Guelph Municipal List of Wildlife Species at Risk provided by Guelph District MNRF (September 2015). Some SAR (Endangered and Threatened) have specialized survey protocols required to detect their presence. Therefore, for any SAR that are not identified in the background review or during 2016 field investigations but have potentially suitable habitat found within the YREDS area, specialized survey protocols for detection will be recommended for the future (see provisional list below).

Incidental wildlife – groups such as mammals and insects (especially butterflies and odonates) will be noted on an incidental basis during all field investigations.

Potential Additional Field Investigations

The following is a number of extra tasks outside the scope of the above TOR which may become necessary depending on the results of the recommended surveys, or if they were recommended by the earlier reports from the background review. These additional investigations would be beyond the currently agreed upon scope, and would require further discussions with the City of Guelph prior to proceeding.

- <u>Butternut Health Assessment.</u> If Butternut trees (Juglans cinerea) are found during botanical surveys, MNRF may request that a Butternut Health Assessment be carried out. Butternut is designated Endangered in Ontario (OMNRF, 2015) and Canada (COSEWIC, 2014).
- <u>Common Nighthawk</u>: the NRSI report (2013) recommended surveys for this species, which require surveys after dusk; if suitable habitat is identified during spring 2016 surveys, then these surveys will be undertaken in late May and June.
- Other SAR: which require specialized protocols and therefore would not be detected by the general survey protocols in the recommended list. If individuals or suitable habitat for the species are found in the YREDS area, this could include the following species: Least Bittern, Chimney Swift, Jefferson Salamander, Blanding's Turtle, three bat species (Tricolored Bat, Northern Myotis, and Little Brown Myotis), and West Virginia White. Based on habitat assessments in the YREDS area, these species were not recommended for future surveys by NRSI (2013).
- <u>Butterfly surveys</u>: there are a number of S1 to S3 species that could occur in the YREDS area, including two sedge specialists (Black Dash (S3) and Dion Skipper (S3)), Hickory Hairstreak (S3), and Common Sootywing (S3). Two locally significant species could also occur: Little Glassywing and Delaware Skipper. If required, butterfly surveys would be conducted in June and July to determine the status of these species, and others, in the YREDS area. Also, a habitat assessment for West Virginia White (Special Concern) would also be undertaken in early spring and surveys for this species in early May would be conducted if suitable habitat and hostplants are found. Any significant stands of Common Milkweed, the hostplant of Monarch (Special Concern), will be noted during all field investigations.
- Odonates: according to Table 6 of the 2013 NRSI report, there are eight species of dragonflies and damselflies with Sranks of S1 to S3 that could occur in the YREDS area; in addition, there are 11 species with local significance (i.e. within the City of Guelph) that could occur. Odonate surveys would be conducted in June and July, with a focus along Clythe Creek, the edges of the two ponds, and in any other wetlands within the YREDS area.
- Winter surveys for Bald Eagle: the NRSI report (2013) recommended surveys for this species along the Eramosa River, which is to the north and east of the present YREDS area. This species would not utilize areas along Clythe Creek during winter or the adjacent ponds (which freeze) so it is not likely to be impacted by proposed activities along York Road. Therefore, these surveys are not recommended. If undertaken, however, it would involve two surveys per month in January and February to check for the presence of this species within the YREDS area. Surveys for other winter raptors are not required as the habitat within and adjacent to the YREDS area does not fulfill size or ELC requirements for this Significant Wildlife Habitat category (Raptor Wintering Area).

8.7. Integrated Summary

All field work activities are intended to address the data gaps for the study area identified as part of the background review process discussed in Section 7. The additional data will ensure a full environmental characterization of the study area, and will support the Environmental Impact Study process by ensuring that all constraints, opportunities, and environmental considerations are understood. All of the sub-disciplines will work collaboratively to ensure that findings and results are shared and that inter-connected constraints and potential mitigation opportunities are understood. Field work activities are expected to commence in the spring (March) of 2016, and extend through to early fall (September); preliminary scheduling is discussed in Section 10 and presented in Table 10.1.

9. STAGE 3 - IMPACT ASSESSMENT/MITIGATION FOR PREFERRED ALTERNATIVE

9.1. Identification of a Preferred Alternative

As part of the overall Environmental Design Study work, a preferred alternative will be identified for the re-alignment of Clythe Creek. This process of developing this preferred alternative will necessarily take into account the environmental sensitivities assessed as part of both the Stage 1 (Characterization) and Stage 2 (Field Work Investigation) works.

9.2. Potential Impact and Mitigation Assessment

Although it is expected that the preferred alternative will necessarily take into account the environmental sensitivities of the study area, there is the potential that environmental impacts could result from the implementation of the preferred alternative. As such, all disciplines will necessarily need to assess the potential for environmental impacts, and generate suggested mitigation measures (if required) to reduce or eliminate these potential impacts. As in previous stages, these environmental disciplines would include:

- Hydrogeology and Geology
- Hydrology and Hydraulics
- Water Quality
- Fluvial Geomorphology
- Fisheries and Aquatic Habitat
- Terrestrial Ecology

An integrated impact assessment (including the generation of mitigation measures) would also be generated which would consider all of the above-noted disciplines holistically.

10. PROJECT TIMING AND SCHEDULE

Based on the expected EIS activities, a preliminary proposed schedule has been developed. Table 10.1 presents the expected commencement and completion dates for major activities, including required field work. It should be noted that the timelines presented in Table 10.1 may be subject to change; notwithstanding date sensitive field work activities will be taken into consideration by the project team to ensure that relevant and meaningful data is collected. Given the need for spring data collection for many field work activities, it is expected that the current TOR should be finalized by late February 2016.

Table 10.1. Preliminary Proposed Schedule of EIS Activities							
Discipline	Task Number	Task and Number of Surveys	Expected Start Date	Expected Completion Date			
All	1	Background Review	Nov 2015	Jan 2016			
All	2	Development and Approval of TOR	Dec 2015	Feb 2016			
Hydrogeology and Geology	3.1	Spot Baseflow Monitoring	Jun 2016	Aug 2016			
	4.1	Rapid Geomorphic Assessments	Mar 2016	Jun 2016			
Fluvial Geomorphology	4.2	Selected Detailed Geomorphic Assessments (Cross-Sections, Profile, and Structures)	Mar 2016	Jun 2016			
	4.3	Spot Flow Monitoring (Higher Flows)	Mar 2016	Jun 2016			
Fisheries	5.1	Fisheries Assessment	Mar 2016	Jun 2016			
	6.1	Vegetation Assessment (3)	Mar 2016	Sep 2016			
	6.2	Tree Inventory & Hazard Assessment (1)	Mar 2016	Sep 2016			
	6.3	Breeding Bird Surveys (2)	May 24 2016	Jul 10 2016			
	6.4	Nocturnal Amphibian Survey (3)	Apr 2016	Jun 2016			
	6.5	Turtle Surveys – Basking Surveys (3)	Mid Apr 2016	Mid Jun 2016			
Terrestrial Ecology	6.6	Turtle Surveys – Nesting Surveys (2)	Late May 2016	Sep 2016			
Loology	6.7	Turtle Surveys – Road Mortality Surveys	Concurrently with other Surveys				
	6.8	Eastern Milksnake Surveys (3)	Late Apr 2016	Mid Jun 2016			
	6.9	Significant Wildlife Habitat (SWH) screening	Concurrently	with all Surveys			
	610	Species at Risk (SAR) Screening	Concurrently with all Surveys				
	6.11	Incidental Wildlife	Concurrently with all Surveys				
All	7	Impact Assessment and Mitigation for Preferred Alternative and Completion of EIS	Jul 2016	Oct 2016			

11. REPORTING AND DOCUMENTATION

Following the completion of field work activities and the associated environmental impact assessment and mitigation analysis with respect to the preferred alternative, the findings will be incorporated into a technical memorandum, which will in turn be incorporated into the overall project reporting. It is expected that this documentation will be circulated and presented to RSAC for review and comment once a draft is available. Input from RSAC will be documented and taken into consideration along with other stakeholder input as part of the process of revising and refining the project reporting.

12. **REFERENCES**

Amec Environment & Infrastructure. February 2012. City of Guelph Stormwater Management Master Plan.

Amec Environment & Infrastructure. September 2013. Guelph Innovation District (GID) – PCSWMM Hydrologic Modelling and Stormwater Management Criteria Establishment, City of Guelph (Memorandum).

Amec Foster Wheeler Environment & Infrastructure. March 2015. Elizabeth Street Reconstruction – Victoria Road to Industrial Avenue, City of Guelph. Submitted to Grand River Conservation Authority.

Amec Foster Wheeler Environment & Infrastructure. September 2015. Guelph Innovation District, Stormwater Management Study, City of Guelph. Prepared for City of Guelph.

Ashworth, H. 2012. Groundwater-Surface Water Interactions and Thermal Regime in Clythe Creek, Guelph, Ontario. Threats and Opportunities for Restoration (Master's Thesis – University of Guelph).

Beak International Incorporated and Aquafor Beech Limited, September 1999. Eramosa-Blue Springs Watershed Report (Parts I, II, and III). Prepared for the Eramosa-Blue Springs Steering Committee.

Cadman, M.D., D.A. Sutherland, G.G. Beck, D. Lepage, and A.R. Couturier (eds.) 2007. Atlas of the Breeding Birds of Ontario, 2001 – 2005. Bird Studies Canada, Environment Canada, Ontario Field Ornithologists, Ontario Ministry of Natural Resources, and Ontario Nature, Toronto. xxii + 706 pp.

City of Guelph 2001. Official Plan – 2014 consolidation.

City of Guelph. 2010a. Official Plan Amendment 42: Natural Heritage Strategy: OPA 42 Schedules.

City of Guelph. 2012. Locally Significant Species List, Significant Plant List. Official Plan Amendment # 42.

City of Guelph. 2014. [Draft] Guidelines for the Preparation of Environmental Impact Studies.

Contentworks Inc., May 2009. Conservation Plan for the Guelph Correctional Centre Heritage Place (prepared for the Ontario Realty Corporation).

COSEWIC (Committee on the Status of Endangered Wildlife in Canada). 2014. Canadian Wildlife Species at Risk. October 2014. Committee on the Status of Endangered Wildlife in Canada. Web site: <u>http://www.cosewic.gc.ca/eng/sct0/rpt/rpt csar e.cfm</u> [accessed 21 April 2015]

D'Amelio S. 2007. Clythe Creek, Guelph, Ontario 2007 Temperature Report. Trout Unlimited Canada Technical Report No. ON-036.

Dobbyn, 1994. Atlas of the Mammals of Ontario.

Dougan & Associates. 2009. Guelph Natural Heritage Strategy, Phase 2: Terrestrial Inventory & Natural Heritage System, Volume 1 – Report. Available at: <u>https://guelph.ca/wp-content/uploads/NaturalHeritageStrategyPhase2_finalReport.pdf</u>

Ecologistics Limited. 1988. Speed and Eramosa Rivers Floodline Mapping Study. Prepared for the Grand River Conservation Authority under the auspices of the Canada/Ontario Flood Damage Reduction Program.

Ecologistics Limited, November 1997 (updated April 1998). Clythe Creek Subwatershed Overview (prepared for Metrus Developments Inc.).

Gamsby and Mannerow Limited, June 2003. Design Report – Hadati Creek Channel Improvements, City of Guelph.

Gamsby and Mannerow Limited, May 2006. Watson Creek Subdivision Report.

Jager Hims Limited, January 1995. Ground Water Resources Study, City of Guelph, Northeast Quadrant, Volume 1. Prepared for the City of Guelph Engineering Department.

Lee, H., W. Bakowsky, J.L. Riley, M. Puddister, P. Uhlig and S. McMurray. 1998. An Ecological Community Classification for Southern Ontario: A First Approximation. Southern Region Science and Technology Transfer Unit, Ontario Ministry of Natural Resources. Natural Heritage Information Centre, Peterborough, Ontario. Southern Region Site Region Planning, Ontario Ministry of Natural Resources. Terrestrial Ecosystems Branch, Ontario Forest Research Institute, Sault Saint Marie, Ont.

NHIC (Natural Heritage Information Centre). 2011. Ontario Vascular Plant Species List. Biodiversity Explorer Online Database. Ontario Ministry of Natural Resources.

NHIC (Natural Heritage Information Centre). 2014. Ontario Vascular Plant Species List. April 2014. Ontario Ministry of Natural Resources. https://contrib.ontario.ca/environment-and-energy/get-natural-heritage-information

NHIC (Natural Heritage Information Centre). 2015. NHIC Species Lists. Available at: http://www.mnr.gov.on.ca/en/Business/NHIC/2ColumnSubPage/STDU 138223.html

NRSI, September 2006. Environmental Input to the EA for the Widening of York Road, Victoria Road to the East City Limit, Guelph, Ontario. Prepared for the City of Guelph/TSH as part of the York Road Improvements Class Environmental Assessment.

NRSI, January 2013. Guelph Correction Centre Natural Heritage Assessment. Prepared for Infrastructure Ontario (IO).

OMNR (Ontario Ministry of Natural Resources). 2000. Significant Wildlife Habitat Technical Guide. 151pp.

OMNR (Ontario Ministry of Natural Resources). 2012. Significant Wildlife Habitat Ecoregion 6E Criterion Schedule. 42 pp. Available at: <u>http://www.ebr.gov.on.ca/ERS-WEB-External/displaynoticecontent.do?noticeId=MTE1ODc5&statusId=MTczNDgy</u>

OMNR (Ontario Ministry of Natural Resources). 2013a. Milksnake Survey Protocol- MNR Guelph District (current as of June 2013). Available directly through OMNR.

OMNRF (Ontario Ministry of Natural Resources and Forestry). 2015. Species at Risk in
OntarioOntarioList.Availableat:http://www.mnr.gov.on.ca/en/Business/Species/2ColumnSubPage/MNR_SAR_CSSR_SARO_LST_EN.html [accessed 21 April, 2015].

Ontario Nature, 2015. Ontario Reptile and Amphibian Atlas.

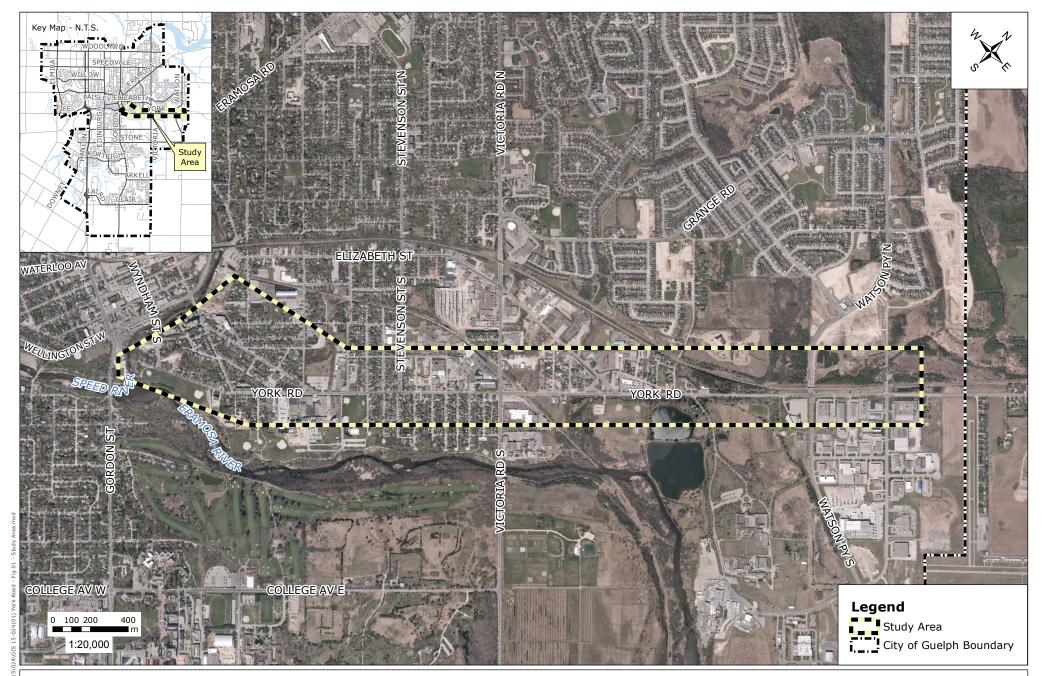
Proctor & Redfern Limited, February 1995. Eramosa-Blue Springs Creek Linear Corridor Initiative (prepared for the Grand River Conservation Authority).

Schroeter & Associates. March 1998. Eramosa Watershed Study – Hydrology Report. Prepared for the Grand River Conservation Authority.

Todd, A. and D'Amelio S. 2006. Clythe Creek, Guelph, Ontario 2006 Temperature Report. Trout Unlimited Canada Technical Report No. ON-019.

Toronto Entomologists' Association, 2015. Ontario Butterfly Atlas Online.

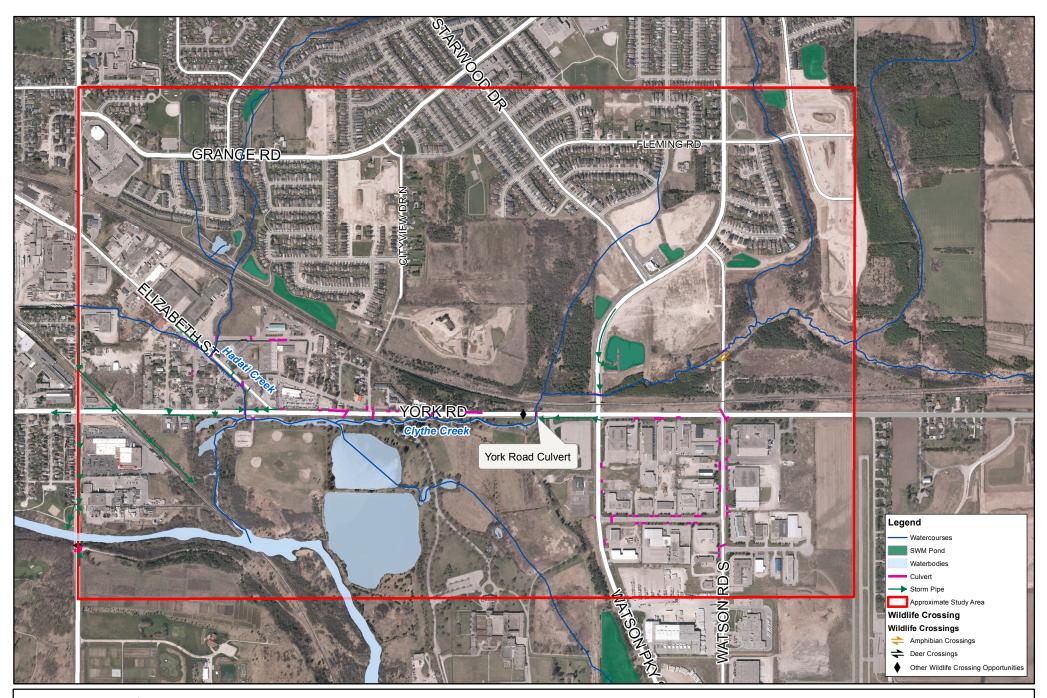
TSH, February 2007. York Road Improvements – Wyndham Street South to East City Limits. Class Environmental Assessment.


University of Waterloo 4th Year Engineering Students, November 2007. Assessment and Remedial Activities for Clythe Creek Phase I Report. Prepared for Trout Unlimited Canada.

University of Waterloo 4th Year Engineering Students, 2007. Assessment of Clythe Creek Remediation Alternatives, Guelph, ON (Presentation Slides).

University of Waterloo 4th Year Engineering Students, March 2008. Rehabilitation of Clythe Creek Phase II Design Report. Prepared for Trout Unlimited Canada.

University of Waterloo 4th Year Engineering Students (Tri-City Environmental Ltd.), 2008. Rehabilitation of Clythe Creek (Presentation Slides).


Weinstein Leeming + Associates Limited. June 1993. City of Guelph River Systems Management Study.

The City of Guelph, its employees and agents, do not undertake to guarantee the validity of the contents of the digital or hardcopy map files, and will not be liable for any claims for damages or loss arising from their application or interpretation, by any party. It is not intended to replace a survey or be used for legal description. This map may not be reproduced without the permission of the City of Guelph. Please contact the City of Guelph's GIS Group for additional information at 519-822-1260.

Produced by the City of Guelph Infrastructure, Development & Enterprise Engineering Services July 31, 2015 **Figure 1** York Road from Wyndham Street to East City Limits Study Area



Figure 2 York Road Environmental Design Study Area

Produced by the City of Guelph Planning, Urban Design and Building Services, Development Planning July 2015

Matrix Supplied December 22, 2015

1. York Road crossing of Clythe Creek. Structure is a concrete box culvert , a pool has formed downstream from a transition riffle .

Matrix Supplied December 22, 2015

2. Looking downstream along Clythe Creek; channel is straight with rock protection located along banks.

Matrix Supplied December 22, 2015

3. Two clay pipes convey flow downstream from a grade control weir. Channel banks are protected by stone.

Matrix Supplied December 22, 2015

4. Approximately 250m downstream from York Road, an approximate 1.2m stone weir grade control structure is present.

Matrix Supplied December 22, 2015

5. Looking downstream along Clythe Creek channel; minor tributary enters the creek in the foreground.

Matrix Supplied December 22, 2015

6. Looking downstream along Clythe Creek. Slow moving water appears to be just below bankfull height.

Matrix Supplied December 22, 2015

7. Looking upstream along Clythe Creek from the historic stone bridge (access to institution lands); a grade control weir is present in the background.

Matrix Supplied December 22, 2015

8. Historic stone bridge is main access to institution lands.

Matrix Supplied December 22, 2015

9. Looking downstream along Clythe Creek from the historic stone bridge; aesthetic islands present in the background.

Matrix Supplied December 22, 2015

10. Looking upstream along Clythe Creek; channel is over widened and stagnant, a CSP culvert contributes surface discharge from the north side of York Road, a sediment bar has formed downstream from the CSP.

Matrix Supplied December 22, 2015

11. Looking upstream along the North Pond connection channel and pedestrian bridge.

Matrix Supplied December 22, 2015

12. Looking upstream along Clythe Creek; channel is over widened and slow moving.

Matrix Supplied December 22, 2015

13. Two CSP culverts convey flows downstream from a parklands access road; channel immediately regains width downstream before Hadati Creek Confluence (background, right bank).

Matrix Supplied December 22, 2015

14. York Road crossing of Hadati Creek; structure is a concrete box culvert , gabion wing-walls protect the banks.

Matrix Supplied December 22, 2015

15. Flow control structure downstream from Hadati Creek confluence.

Matrix Supplied December 22, 2015

16. Channel remains wide and stagnant downstream from Hadati Creek. Water is turbid and woody debris is frequent.

Matrix Supplied December 22, 2015

17. Beaver dam located approximately 250m upstream from the Eramosa River confluence.

Matrix Supplied December 22, 2015

18. Clythe Creek flows immediately adjacent to railway embankment; embankment protection appears to be limited to vegetation. Water turbidity changes coulour to appear more beige.

Matrix Supplied December 22, 2015

19. Looking downstream along the Eramosa River towards the Clythe Creek confluence located to the right. Railway embankment and bridge structure crossing the Eramosa River also present in background.

Matrix Supplied December 22, 2015

20. Looking upstream along the Eramosa River; embankment separating the South Pond and Eramosa visible in the background left.

Matrix Supplied December 22, 2015

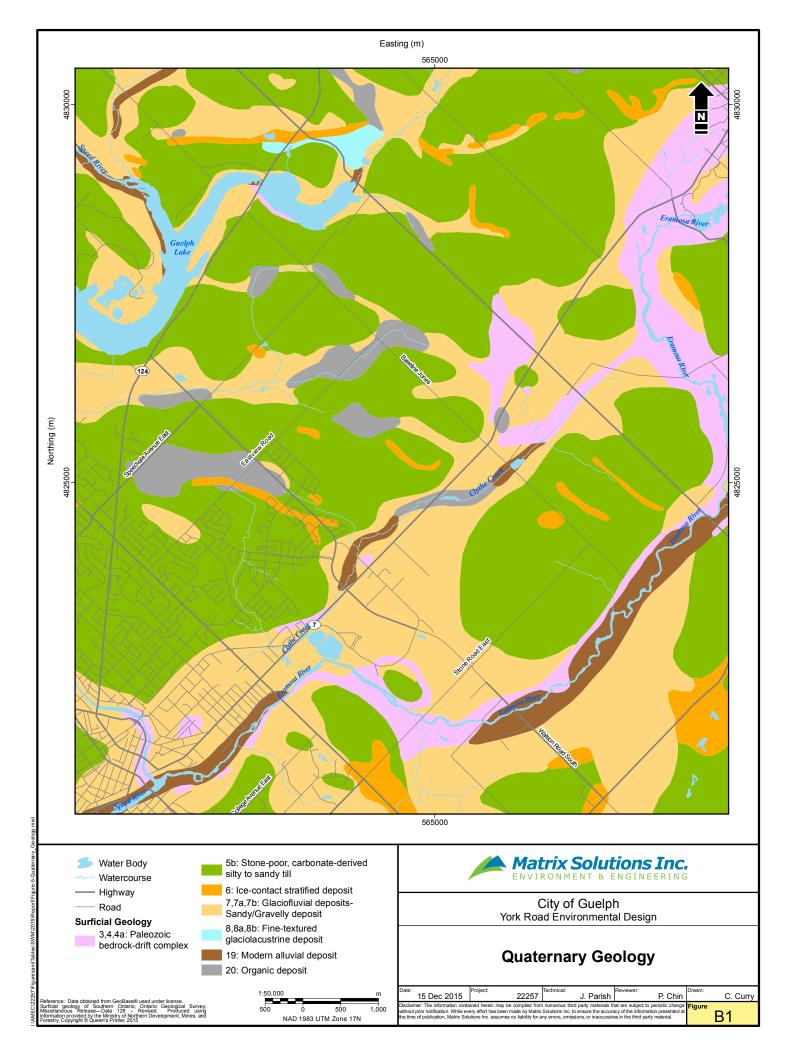
21. South Pond connection to the Eramosa River through an CSP pipe elevated approximately 30cm; the pipe appears to be blocked and discharge is minimal.

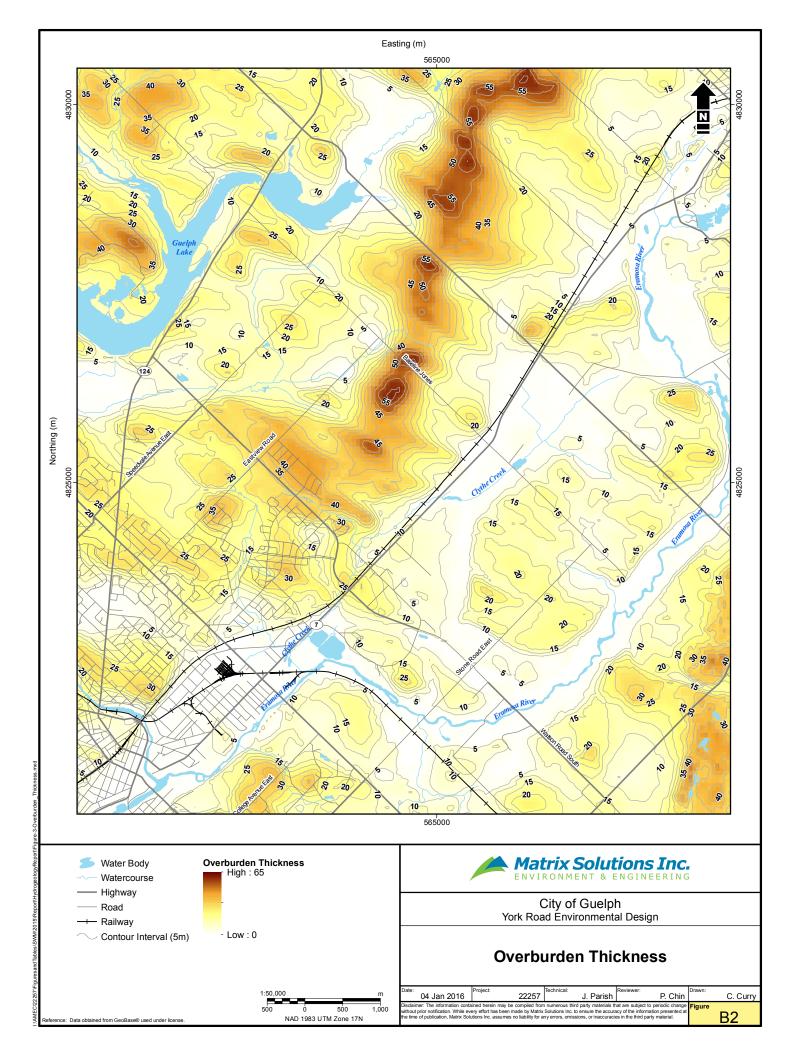
Matrix Supplied December 22, 2015

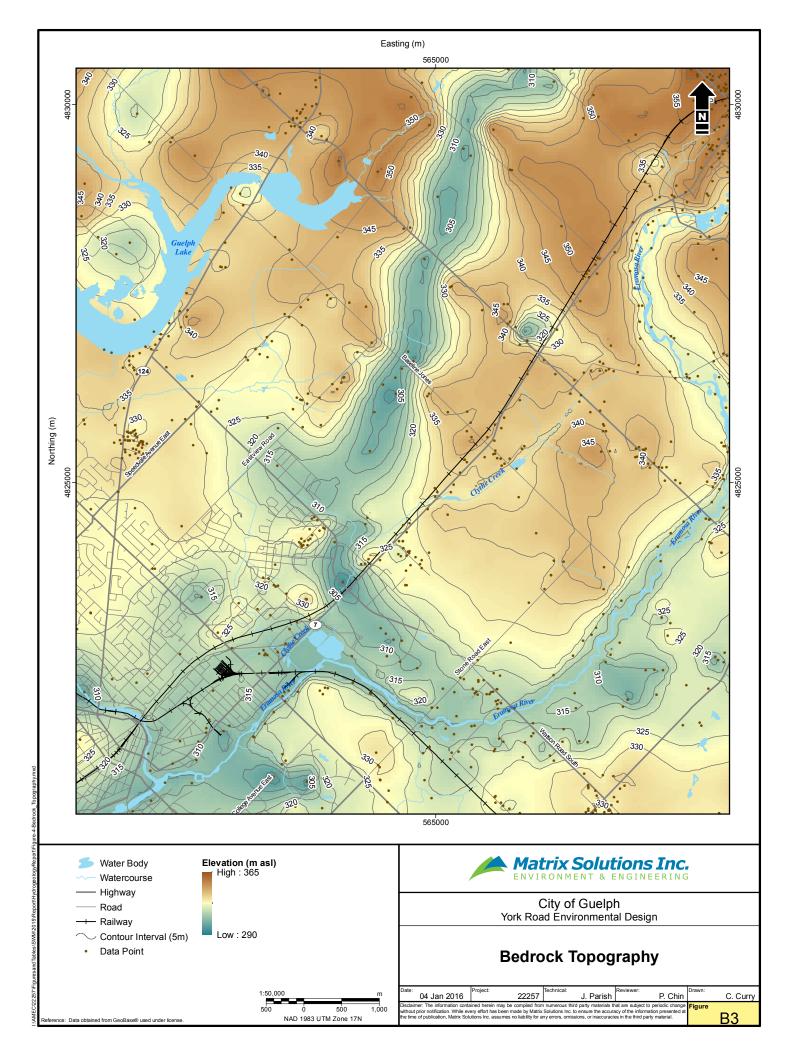
22. South pond breaches its banks at the ponds north-east corner; flow is contributed to a surface drainage tributary that flows adjacent to the pond and into the Eramosa River.

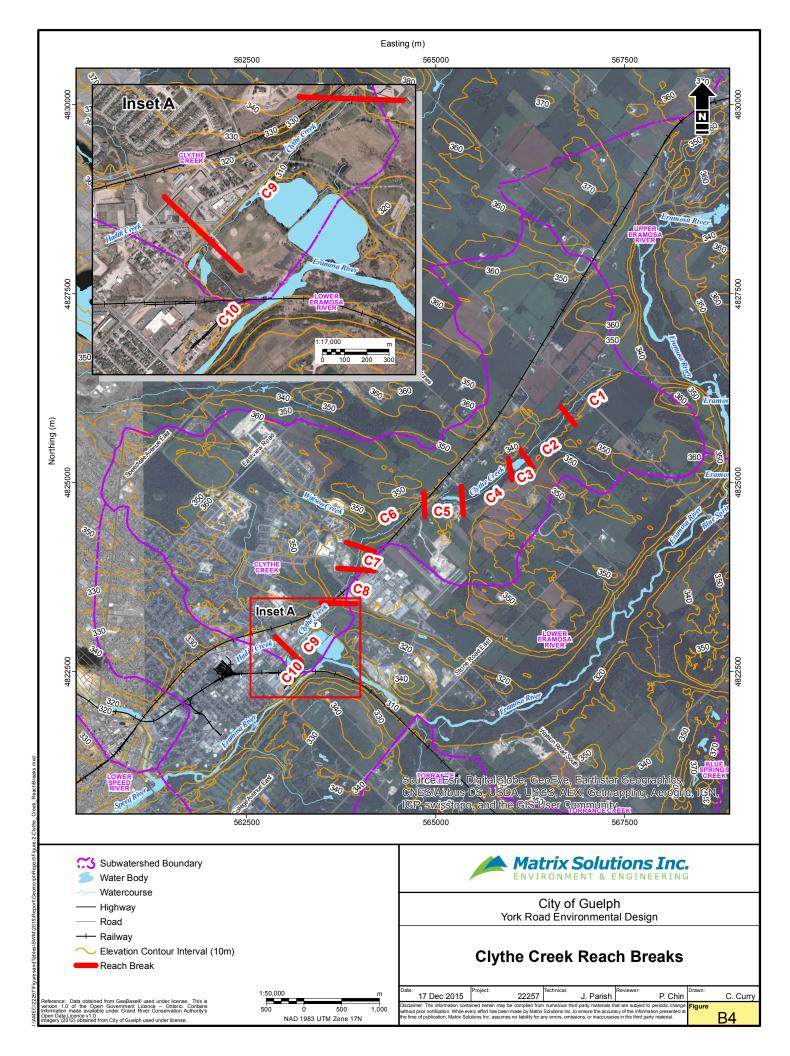
Matrix Supplied December 22, 2015

23. Drainage channel from decorative ponds discharges into the South Pond.




Matrix Supplied December 22, 2015


24. Decorative pond, grade control feature.


TABLE B1: CLYTHE CREEK REACH BREAK CHARACTERISTICS

	IARACTERISTICS				CLYTH	E CREEK REAG	CH BREAK IDE	NTIFIER			
		C1	C2	C3	C4	C5	C6	C7	C8	C9	C10
Bankfull Width	The width (m) of the channel at its fullest capacity	1.1	Not accessible	30	1.3	Ponded areas ~50 Channelized areas ~5	3	1.6	2.4	1 to 5	10 to 12
Depth of Channel	The depth (m) if the channel at its deepest point	0.10 - 0.12		<2	0.05 - 0.10	Ponded areas >2 Channelized Areas ~0.25	0.25	0.08 – 0.10	0.24	0.5	0.5
Substrate Type	The characteristics of the material found on the streambed	Organic		Organic	Organic	Silt/organic	Organic	Gravel/organ ic	Silt/organic	Gravel and rubble with thin organic layer	Silt/organic
Cover	The type and amount of vegetation found overhanging the stream	Dense jewelweed, cattails and occasional cedar		Mostly open water with cattails	Mainly cattails with scattered cedars	Herbaceous, lily pads around perimeter, red osier dogwood, cedars	Cattails, jewelweed, reed canary grass, areas of dense shrub	Herbaceous, open meadow with small poplar/cedar stand	Dense shrub understory with willow trees	Mowed lawn	Dense shrub species, mixed herbaceous and occasional willow trees
Width of Riparian Zone	The width (m) of the naturally vegetated areas adjacent to the creek	18 – 40	120	90	115	40	40 - 80	80	50	None	1 - 120
Channel Stability	Channel and bank characteristics which indicate stability of channel including erosion, bank failure, etc.	Stable		Stable	Stable, bank heights are low to nil	Stable	Stable	Stable	Stable, however some undercutting is evident	Stable	Generally stable but with some evidence of undercutting
Number of Bridge or Culvert Crossings	Number of "breaks" in channel continuity from bridges, culverts and dams	1	0	0	0	3	1	0	0	13 Culverts, artificial waterfalls and trickle- downs	3
Sinuosity	Length of channel compared to linear distance from upstream to downstream limits of reach	1.32	1.09	1.33	1.1	1.1	1.27	1.25	1.08	1.43	1.3
Other Comments		Cool, clear water		Scattered slumps present	Open marsh, creek becomes braided through marsh	Overflowing outlet in first pond, water very still, landscaped areas	Open marsh, channel is braided in areas	Meanders through open meadow	Good shading, water is cool as is crosses under CNR berm	Occasional landscaped areas, a few storm outfalls	Water very cloudy and slow flowing, lily pads and margins of confluence

York Road east of Clythe Creek crossing

Upstream face of Clythe Creek crossing

Upstream of York Road

Looking upstream of York Road

Clythe Creek culvert

Downstream face of Clythe Creek

Downstream of York Road crossing

Downstream of York Road crossing

Cultural heritage wall close to York Road culvert

Downstream of York Road crossing

Pool feature immediately downstream of culvert

Cultural heritage wall in distance

Steep grading along north side of road

Cultural heritage wall south of creek

Pool downstream of culvert

Cultural heritage drop structure with side walls and pipes

Cultural heritage drop structure with side walls and pipes

York Road Environmental Design Study Environmental Impact Study (EIS) Appendix B

Creek parallel to road

Cultural heritage drop structure

Cultural heritage drop structure

Cultural heritage drop structure

Looking west along York Road

Cultural heritage drop structure

Drainage feature confluence with the creek

Creek in close proximity to the roadway

Creek in close proximity to roadway

Cultural heritage wall feature

Cultural heritage wall feature and bus stop in the background

Bus stop just west of former Reformatory driveway

Cultural heritage wall and drop structure just west of former Reformatory driveway

Cultural heritage wall along York Road

Former Reformatory driveway

Creek immediately upstream of former Reformatory driveway Note creek is in a backwater condition

Creek immediately upstream of former Reformatory driveway Note creek is in a backwater condition

Looking at Cultural Heritage wall upstream of former Reformatory driveway

Former Reformatory driveway crossing

Former Reformatory driveway crossing

York Road Environmental Design Study Environmental Impact Study (EIS) Appendix B

Former Reformatory driveway crossing

Downstream of former Reformatory driveway crossing Note drop structure

Former Reformatory driveway crossing

Lined channel downstream of former Reformatory driveway

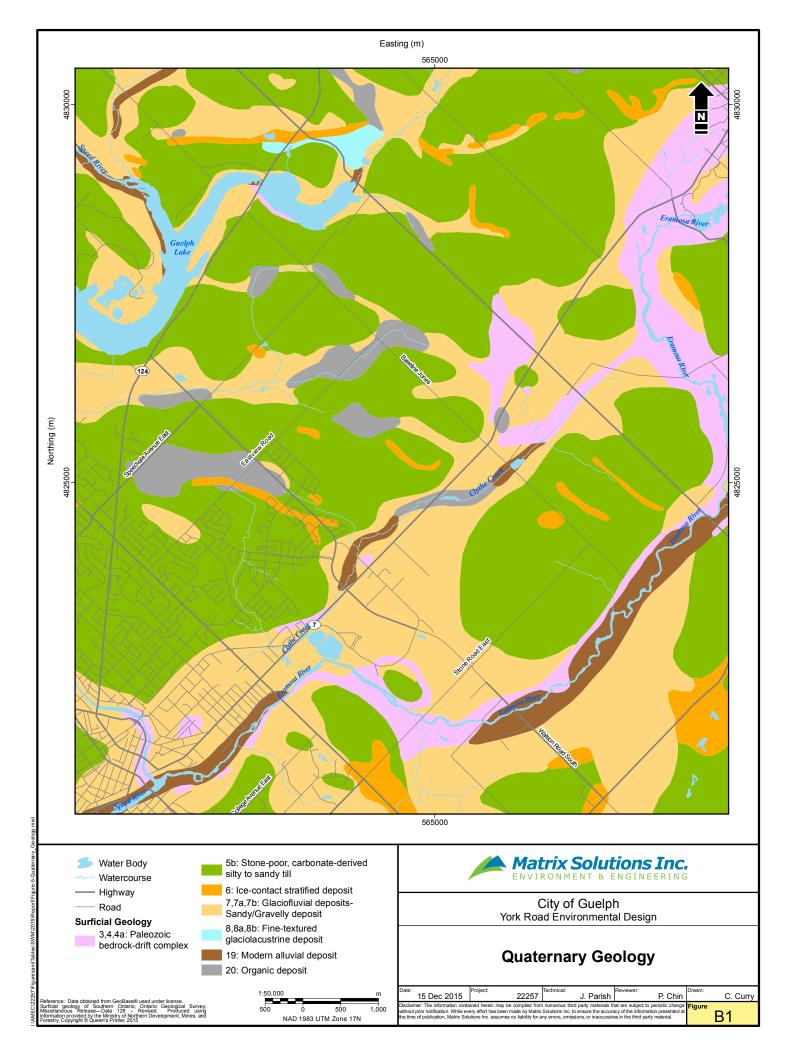
Drop structure downstream of former Reformatory driveway crossing

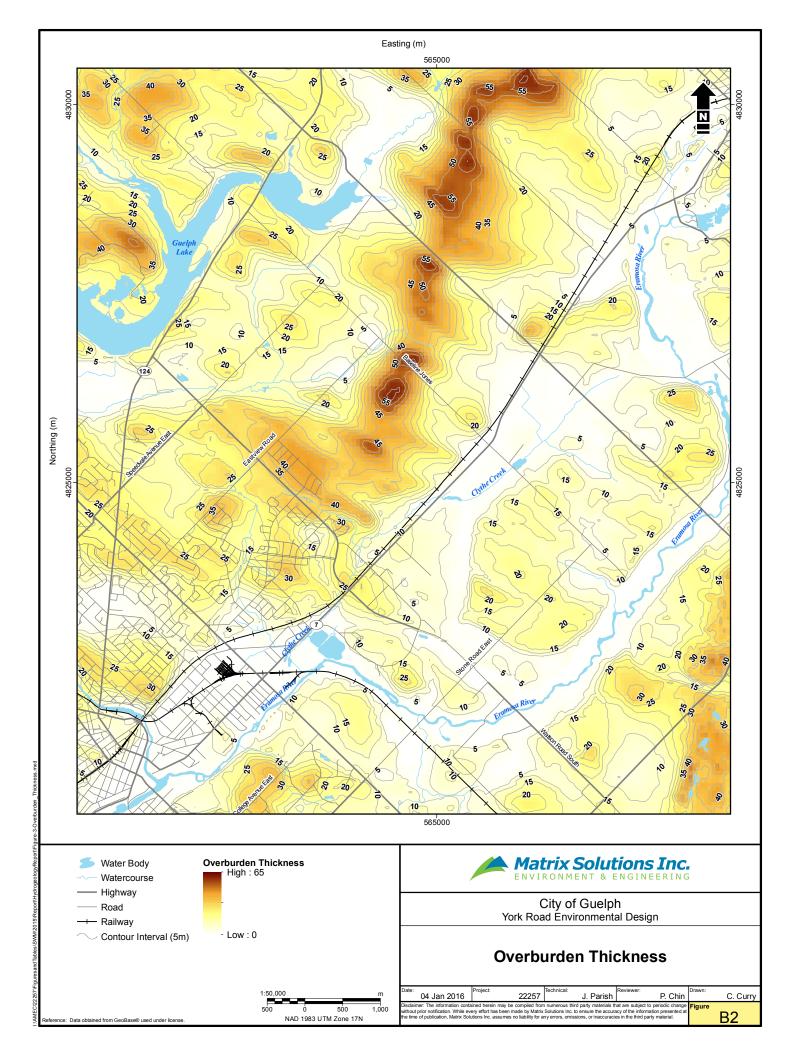
Ponds adjacent to Clythe Creek

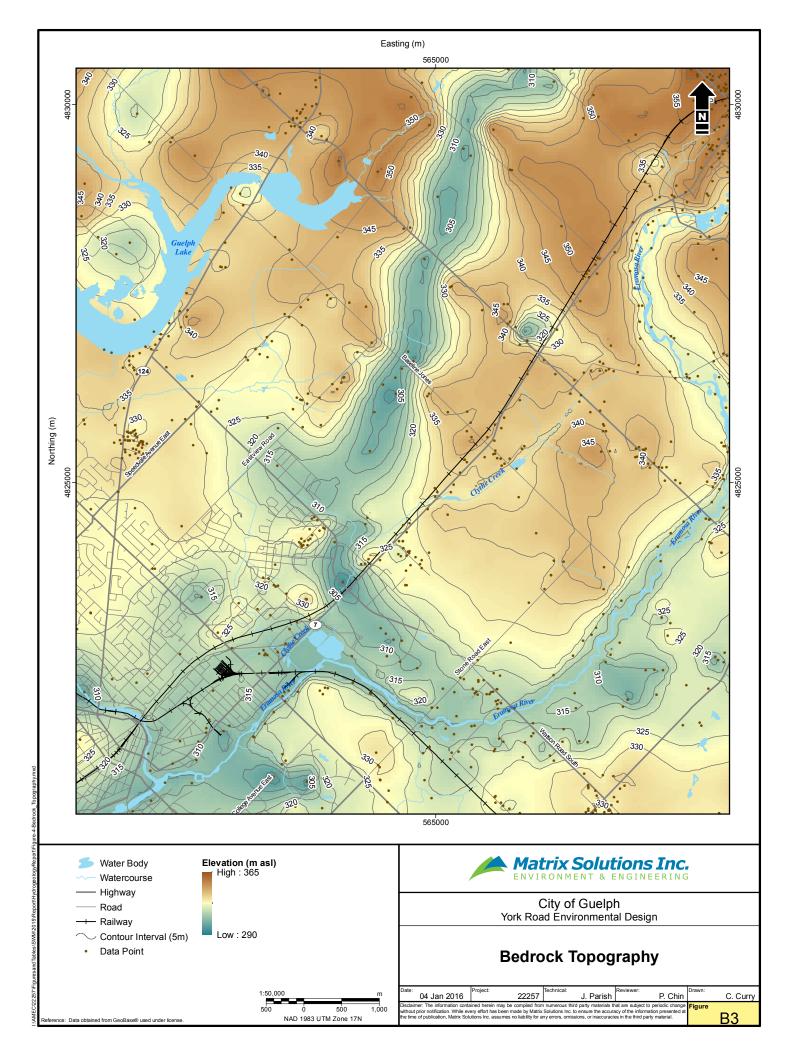
Ponds adjacent to Clythe Creek

Upstream of twin CSP crossing into park parking lot

Downstream of twin CSP culverts


Driveway into park




Clythe Creek at meander downstream of park driveway

Damaged energy dissipation structure upstream of confluence with the Eramosa River

					Existing Co	nditions HI	EC-RAS Mo	del Results				
Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(m3/s)	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)	
Reach1	1486.058	2 Year	3.5	316.96	317.7	317.7	317.8	0.006044	1.48	4.83	34.7	0.68
Reach1	1486.058	5 Year	5.3	316.96	317.78	317.78	317.88	0.006422	1.68	7.41	37.21	0.72
Reach1	1486.058	10 Year	8.3	316.96	318.22	317.86	318.24	0.000676	0.81	29.17	56.36	0.26
Reach1	1486.058	25 Year	15.5	316.96	318.99	318	318.99	0.000145	0.55	78.55	70.34	0.13
Reach1	1486.058	50 Year	22.8	316.96	320.46	318.14	320.46	0.000023	0.33	203.7	105.04	0.06
Reach1	1486.058	100 Year	32.6	316.96	320.57	318.24	320.57	0.00004	0.44	215.64	106.34	0.08
Reach1	1486.058	Regional	80.7	316.96	320.9	318.61	320.91	0.000158	0.93	251.44	110.17	0.16
	1477.037	2 Year	3.5	316.47	317.48	317.27	317.57	0.00301	1.45	3.16	10.29	0.52
Reach1		5 Year	5.3	316.47	317.73	317.41	317.84	0.002484	1.58	4.41	11.18	0.5
Reach1	1477.037	10 Year	8.3	316.47	318.09	317.6	318.22	0.002082	1.77	6.19	12.09	0.48
	1477.037	25 Year	15.5	316.47	318.8	317.97	318.97	0.001693	2.1	9.73	50.05	0.46
	1477.037	50 Year	22.8	316.47	320.42	318.29	320.45	0.000243	1.16	79.99	144.29	0.19
Reach1	1477.037	100 Year	32.6 80.7	316.47 316.47	320.52 320.8	318.67 320.55	320.57 320.9	0.000346	1.41 2.43	95.01	147.56	0.23 0.38
Reach1	1477.037	Regional	80.7	310.47	320.8	320.55	320.9	0.000929	2.43	140.24	177.49	0.38
Reach1	1463.072		Bridge									
Reactif	1405.072		ыше									
Reach1	1452.487	2 Year	3.5	316.44	317.03	317.03	317.24	0.011975	2.07	1.73	4.7	0.98
Reach1	1452.487	5 Year	5.3	316.44	317.03	317.03	317.24	0.011973	2.36	2.37	6.06	0.98
	1452.487	10 Year	8.3	316.44	317.38	317.38	317.43	0.009447	2.50	3.38	8.06	0.98
	1452.487	25 Year	o.5 15.5	316.44	317.38	317.58	318.28	0.009447	3.32	5.24	11.65	0.98
Reach1	1452.487	50 Year	22.8	316.44	318.07	318.07	318.74	0.008188	3.78	6.83	17.06	0.98
Reach1	1452.487	100 Year	32.6	316.44	318.43	318.43	319.29	0.00789	4.29	8.65	27.34	1
Reach1	1452.487	Regional	80.7	316.44	319.32	319.32	319.67	0.003441	3.68	55	49.8	0.71
		-0.0101			, _ 0.0		0.07					<u> </u>
Reach1	1429.623	2 Year	3.5	316.32	316.72	316.72	316.84	0.009269	1.71	3.15	14.66	0.87
	1429.623	5 Year	5.3	316.32	316.8	316.8	316.94	0.009445	1.96	4.41	16.96	0.91
	1429.623	10 Year	8.3	316.32	316.91	316.91	317.08	0.009313	2.23	6.42	20.19	0.93
Reach1	1429.623	25 Year	15.5	316.32	317.1	317.1	317.3	0.009105	2.65	10.65	24.58	0.97
	1429.623	50 Year	22.8	316.32	317.22	317.22	317.48	0.009666	3.03	13.9	26.36	1.02
Reach1	1429.623	100 Year	32.6	316.32	317.37	317.37	317.67	0.009816	3.38	18.01	28.5	1.06
Reach1	1429.623	Regional	80.7	316.32	318.03	317.89	318.38	0.006947	3.94	39.86	37.64	0.96
Reach1	1428.749	2 Year	3.5	315.53	316.16	316.16	316.37	0.012173	2.05	1.74	4.97	0.99
Reach1	1428.749	5 Year	5.3	315.53	316.33	316.33	316.54	0.008251	2.09	3.1	9.22	0.86
	1428.749	10 Year	8.3	315.53	316.49	316.49	316.74	0.007802	2.38	4.69	10.66	0.87
	1428.749	25 Year	15.5	315.53	316.74	316.74	317.1	0.008487	2.99	7.61	12.81	0.95
	1428.749	50 Year	22.8	315.53	317.02	317.02	317.37	0.006636	3.1	12.2	20.64	0.87
	1428.749		32.6	315.53	317.27	317.27	317.62	0.005754	3.26	18.43	27.83	0.84
Reach1	1428.749	Regional	80.7	315.53	317.87	317.87	318.36	0.00658	4.33	37.53	36.14	0.94
	1356.024	2 Year	3.7	315.32	315.81	315.81	315.81	0.000671	0.4	17.94	124.48	0.23
	1356.024	5 Year	6.1	315.32	315.81	315.81	315.82	0.001822	0.67	17.95	124.48	0.37
	1356.024	10 Year	8.5	315.32	315.81	315.81	315.83	0.003538	0.93	17.95	124.48	0.52
	1356.024	25 Year	15.5	315.32	315.81	315.81	315.86	0.011765	1.69	17.95	124.48	0.95
	1356.024	50 Year	22.8	315.32	315.82	315.82	315.93	0.020963	2.32	19.08	124.78	1.27
	1356.024 1356.024		32.4	315.32	315.88	315.88	316.01	0.022087	2.62	23.42	125.93	1.34
Reach1	1356.024	Regional	81.1	315.32	316	316	316.06	0.005555	1.58	75.77	128.66	0.7
Reach1	1311.56	2 Year	3.7	315.2	315.6	315.6	315.6	0.000006	0.04	86.82	113.8	0.02
Reach1	1311.56	2 Year 5 Year	3.7 6.1	315.2	315.6	315.6	315.6	0.000008	0.04	86.82	113.8	0.02
Reach1	1311.56	10 Year	8.5	315.2	315.6	315.6	315.6	0.000018	0.00	86.82	113.8	0.05
Reach1	1311.56	25 Year	15.5	315.2	315.6	315.6	315.6	0.000034	0.09	86.82	113.8	0.03
Reach1	1311.50	50 Year	22.8	315.2	315.6	315.6	315.6	0.000113	0.10	86.82	113.8	0.03
Reach1	1311.56	100 Year	32.4	315.2	315.6	315.6	315.61	0.000245	0.24	86.82	113.8	0.13
Reach1	1311.56	Regional	81.1	315.2	315.6	315.6	315.64	0.003103	0.86	86.82	113.8	0.46
				· · ·					-	-	-	-
Reach1	1310.373	2 Year	3.7	314.13	314.7	314.7	314.91	0.012749	1.98	1.86	4.64	1
	1310.373	5 Year	6.1	314.13	314.88	314.88	315.13	0.011783	2.21	2.76	5.5	0.99
	1310.373	10 Year	8.5	314.13	314.99	314.99	315	0.001449	0.84	25.03	113.85	0.36
	1310.373	25 Year	15.5	314.13	314.99	314.99	315.04	0.004816	1.54	25.04	113.85	0.65
	1310.373	50 Year	22.8	314.13	315.01	315.01	315.09	0.008415	2.06	27.07	114.87	0.86
	1310.373		32.4	314.13	315.06	315.06	315.16	0.009871	2.33	32.61	114.98	0.94
Reach1	1310.373	Regional	81.1	314.13	315.22	315.22	315.41	0.014658	3.32	51.92	115.18	1.19
	1281.832	2 Year	3.7	314.49	314.8	314.8	314.8	0.000005	0.03	89.07	101.63	0.02
	1281.832	5 Year	6.1	314.49	314.8	314.8	314.8	0.000014	0.05	89.07	101.63	0.03
	1281.832	10 Year	8.5	314.49	314.8	314.8	314.8	0.000026	0.07	89.07	101.63	0.04
	1281.832	25 Year	15.5	314.49	314.8	314.8	314.8	0.000087	0.13	89.07	101.63	0.08
	1281.832	50 Year	22.8	314.49	314.8	314.8	314.8	0.000189	0.19	89.07	101.63	0.12
	1281.832		32.4	314.49	314.8	314.8	314.81	0.000382	0.26	89.07	101.63	0.16
Reach1	1281.832	Regional	81.1	314.49	314.8	314.8	314.84	0.002393	0.66	89.07	101.63	0.41
Dec. 1.4	1000 =0 :	2.4	~ -	242.5	244.24	244.25	244.45	0.04266-	2.01	4.04	A 40	0.00
Keach1	1280.724	2 Year	3.7	313.6	314.21	314.21	314.42	0.012625	2.01	1.84	4.42	0.99
- ·	1280.724	5 Year	6.1	313.6	314.39	314.39	314.65	0.010855	2.25	2.78	6.56	0.96
	1 1 2 1 7 2 /	10 Year	8.5	313.6	314.51	314.51	314.51	0.000073	0.21	65.04	101.69	0.08
Reach1		.	A	242 -	04 ·	044						
Reach1 Reach1	1280.724	25 Year	15.5	313.6	314.51	314.51	314.51	0.000243	0.38	65.05	101.69	0.15
Reach1 Reach1 Reach1	1280.724 1280.724	50 Year	22.8	313.6	314.51	314.51	314.52	0.000525	0.56	65.05	101.69	0.22
Reach1 Reach1 Reach1	1280.724	50 Year 100 Year					1					

Instruct				0 7 1 1			0.11.14.6						5 L # 01 L
neemb Debase Debase <thdebase< th=""> Debase <thdebase< th=""> <thdebase< th=""> <thdebase< th=""></thdebase<></thdebase<></thdebase<></thdebase<>	Reach	River Sta	Profile			W.S. Elev	Crit W.S.		-	Vel Chnl	Flow Area	Top Width	Froude # Chl
nearcy Lot 26.8 Stare 1.3.4 1.4.4.4 1.4.4.4 1.4.3.4 0.00027 0.0.8 6.1.71 7.7.78 0.0.5 neurb 1.4.4.6.3 0.3.4.7 0.3.4 3.4.4.4 3.4.4.4 0.00007 0.1.5 0.1.7 7.7.78 0.0.5 neurb 1.0.5.60 0.0.7 2.0.3 0.0.0001 0.0.0 0.0.0 0.0.1 0.0.7 0.0.1 neurb 1.0.5.60 0.0.7 2.0.3 0.0.2 0.0.3 0.0.0001 0.0.0 0.0.1 0.0.7 0.0.1 0.0.2	Reach1	1245.863	2 Year	1	. ,	. ,	. ,	. ,					0.03
Reach 212-86.83 215-86.85 314-34 314.34 313.34 313.34 313.34 313.34 313.34 313.34 313.34 313.34 313.34 313.34 313.34 313.34 313.34 313.34 313.34 313.34 313.34 31													
Bach Bits Bits <th< td=""><td>Reach1</td><td>1245.863</td><td>10 Year</td><td>8.5</td><td>314</td><td>314.34</td><td>314.34</td><td>314.34</td><td>0.000057</td><td>0.11</td><td>63.17</td><td>77.78</td><td>0.06</td></th<>	Reach1	1245.863	10 Year	8.5	314	314.34	314.34	314.34	0.000057	0.11	63.17	77.78	0.06
Rech1 1268-883 100 Year 22.4 31.4 31.4.3 31.4.3 31.4.3 91.4.4 00.00771 1.0 64.99 77.88 0.24 Rech1 124.8.8 2 Year 2.7 31.00 31.8.6 31.8.6 31.8.6 0.00071 1.0 4.0.4 0.044 Rech1 124.4.8 5 Year 4.7 31.0.0 31.8 31.8 0.00228 1.0 34.8.0 1.0 34.8.0 0.0228 3.0 34.8.0 1.0 34.8.0 0.00228 1.0 34.8.0 1.0 34.8 1.0 34.8 1.0 34.8 1.0 34.8 1.0 34.8 1.0 34.8 1.0 34.8 1.0 34.8 1.0 34.8 1.0 34.8 1.0 34.8 1.0 34.8 1.0 33.8 0.0 33.8 0.0 33.8 0.0 33.8 0.0 1.0 34.8 0.0 1.0 34.8 0.0 33.8 0.0 1.0 0.0													
neach 2428.88 Begional 81.1 314.3 314.34 314.44 20077 10.2 6.7 78.18 0.209 Reach 2124.83 27487 3.7 311.02 313.83 313.84 0.000562 2.03 3.84 7.42 0.0007 Reach 2144.83 10 Yerr 8.5 310.0 313.0 313.0 0.00076 0.07 3.9 7.42 0.027 Reach 2144.83 50 Yerr 6.5 310.0 313.3 313.0 0.00076 1.67 7.05 7.42 0.527 Reach 214.78 Regional 0.11 210.2 313.3 313.43 0.00070 1.02 20.03 35.36 0.027 Reach 117.229 2747 7.1 312.2 313.33 313.34 0.00070 1.02 20.03 35.36 0.52 Reach 117.229 115.0 312.2 313.33 313.43 0.00072 1.02 1.02.0 35.36 0.0													
new 124.4.3 5 Yeas 3.7 31.8.4 31.8.4 31.8.4 0.012559 2.0.1 1.8.4 4.2.2 0.984 Beach 124.6.8.1 5 Yeas 6.1 33.10.9 31.3.8 31.3.8 31.3.8 0.000290 0.27 38.99 71.42 0.37 Beach 124.4.3 10 Year 5.3 31.0.0 31.3.3 11.3.8 0.00229 0.37 38.9 71.42 0.35 Beach 124.4.3 100 Year 2.4 31.0.0 31.3.3 11.3.4 0.00278 1.6 7.00 7.3.4 0.57 Beach 1176.290 Year 5.7 31.2.2 31.3.3 13.3.3 13.3.4 0.00284 1.6 7.00 7.3.5 0.0.5 Beach 1176.290 Year 5.3 31.2.2 31.3.3 31.3.3 13.3.4 0.00284 0.3 2.0.2 2.0.2 2.0.2 2.0.2 0.0.2 0.3.5 0.0.2 0.3.5 0.0.2 0.0.2 0.0.2													
neach 2244.23 5 Yere 6.1 313.02 313.03 313.03 313.00 <td>Reactin</td> <td>1245.805</td> <td>Regional</td> <td>01.1</td> <td>514</td> <td>514.50</td> <td>514.54</td> <td>514.44</td> <td>0.004771</td> <td>1.02</td> <td>04.97</td> <td>70.10</td> <td>0.39</td>	Reactin	1245.805	Regional	01.1	514	514.50	514.54	514.44	0.004771	1.02	04.97	70.10	0.39
neach 2244.23 5 Yere 6.1 313.02 313.03 313.03 313.00 <td>Reach1</td> <td>1244.83</td> <td>2 Year</td> <td>3.7</td> <td>313.02</td> <td>313.63</td> <td>313.63</td> <td>313.84</td> <td>0.012559</td> <td>2.01</td> <td>1.84</td> <td>4.42</td> <td>0.99</td>	Reach1	1244.83	2 Year	3.7	313.02	313.63	313.63	313.84	0.012559	2.01	1.84	4.42	0.99
Beach 1244.33 2 Syar 15.5 313.02 31.30											3.54		0.84
Beach 1244.KS 50 Year 71.22 0.13102 31.30 31.33 31.34 0.00377 0.99 38 71.42 0.05 Reach 1244.S3 Regional 81.1 31.30 31.33 31.34 0.00078 1.68 71.42 0.05 Reach 1175.299 Vear 3.7 31.32 31.33 31.33 0.00075 0.21 0.003 35.36 0.15 Reach 1175.299 Over 6.3 31.22 31.33 31.33 0.00075 0.21 0.003 35.36 0.11 Reach 1175.299 Over 2.8 31.22 31.33 31.34 0.000721 0.57 0.03 35.36 0.12 Reach 1175.299 Over 7.1 31.12 31.33 31.34 0.000721 0.57 0.03 35.36 0.12 Reach 1175.291 0.21 31.22 31.33 31.34 0.00071 0.03 0.03 0.03 0.03	Reach1									0.37		71.42	
Besch 1244.83 100 Year 92.4 313.02 313.20 313.30 313.80<													
Recht 1724X83 Regional 81.1 91.23 31.24 31.34 31.34 0.007 70.00 79.34 0.007 Reacht 1175.299 2Year 5.7 31.32 31.33 31.34 0.00751 0.21 0.003 35.36 0.35.66 0.78 Rescht 1175.29 100 veru 2.4 31.32 31.33 31.34 0.00720 1.6 0.83 0.023 0.56 0.78 Rescht 1175.27 10 veru 2.7 11.79 31.24 31.24 31.24 31.25 0.00524 1.6 3.66 0.74 Rescht 1175.27 10 veru 2.7 11.79 31.24 31.24 31.24 31													
newchi 117:20 Year 3.7 13.22 31.33 31.33 31.33 0.000140 0.15 20.03 35.36 0.07 Reachi 1176.289 19 var 8.5 31.32 31.33 31.33 31.34 0.00057 20.03 35.36 0.015 Reachi 1176.289 19 var 8.5 31.32 31.33 31.33 31.34 0.00075 70.03 35.36 0.03 Reachi 1176.289 Regional 8.11 31.22 31.24 31.32 31.33 31.34 0.00035 1.8 3.85 1.07 0.003 5.86 0.74 Reachi 1175.274 Year 5.7 31.17 31.24 31.24 31.23 31.33 31.35 0.0055 1.8 3.85 10.86 0.91 0.66 0.91 Reachi 1175.274 Over 2.5 31.17 31.24 31.24 31.24 31.24 31.24 31.24 31.24 31.24 31.24													
Reacht 117:5299 5Yeur 6.1 313.22 313.33 313.34 0.000492 0.12 20.03 33.36 0.01 Reacht 117.6299 25 ver 15.5 313.22 313.33 313.34 0.002044 0.30 20.03 33.36 0.03 Reacht 117.6299 Regunal 81.32 313.34 31.34 10.01033 0.83 20.32 35.36 0.78 Reacht 117.529 Regunal 81.31.22 31.34.0 31.34.2 31.34.9 0.00239 2.14 54.44 58.76 0.74 Reacht 117.5274 Yever 5.1 31.79 312.44 312.24 312.25 0.00275 1.8 3.85 10.56 0.74 Reacht 1175.274 Over 6.1 31.79 312.44 312.24 312.8 0.0077 2.55 8.16 15.29 0.83 Reacht 1175.274 Over 5.3 1.79 312.43 312.44 312.44 30.	Reactif	1244.05	Regional	01.1	515.02	514.57	515.5	514.44	0.002508	1.00	74.00	75.54	0.57
Reach 1176.209 10 Year 8.5 31.322 31.333 31.34 0.000795 0.21 20.3 35.36 0.21 Reach 1177.929 50 Year 15.3 31.32 31.33 31.33 31.34 0.000721 0.37 20.30 35.36 0.52 Reach 1177.597 100 Year 2.4 31.32 31.33 31.34 10.00571 0.33 2.44 5.4.8 5.4.8 0.78 Reach 1175.274 Year 3.7 31.7.9 31.2.42 31.2.2 11.2.67 0.00753 1.8 3.8.5 10.5.9 0.78 Reach 1175.274 Year 5.7 31.7.9 31.2.43 31.2.47 10.2.47 1.05.6 1.5.2 0.6.9 1.5.2 0.6.9 1.5.2 0.6.9 1.5.2 0.6.9 1.5.2 0.0.9 1.6.3 1.5.2 0.0.9 1.6.3 0.2.9 0.4.9 0.4.9 0.4.9 0.4.9 0.4.9 0.4.9 0.4.9 0.4.9 0.4.9	Reach1	1176.299	2 Year	3.7	313.22	313.33	313.33	313.33	0.000151	0.09	20.03	35.36	0.09
Seach 1176.290 95 Yer 15.5 31.222 31.333 31.334 0.002244 0.057 0.003 35.36 0.55 Reach 1176.299 100 Yeor 32.4 31.322 31.344 31.342 0.010939 0.43 2.03 35.36 0.75 Reach 1175.297 Perer 31.322 31.344 31.322 31.344 31.342 0.010939 0.44 58.86 0.76 Reach 1175.274 Perer 6.1 31.129 31.246 312.67 0.007055 1.86 3.85 1.058 0.79 1.166 0.01 Reach 1175.274 10 Yeor 3.1179 31.324 31.318 0.00747 2.55 8.16 1.52 0.849 0.49 0.49 0.44 0.49 0.44 0.49 0.44 0.49 0.49 0.44 0.49 0.49 0.44 0.49 0.49 0.44 0.49 0.49 0.44 0.40 0.44 0.44 0.44	Reach1	1176.299	5 Year	6.1	313.22	313.33	313.33	313.34	0.000409	0.15	20.03	35.36	0.15
Reach I176.299 91 You 22.8 31.222 31.333 31.34 0.000721 0.037 20.3 35.65 0.778 Reach I176.299 Regional 81.1 31.322 31.33 31.341 0.000723 2.34 54.84 58.65 0.778 Reach I175.277 ZYeur 3.7 31.79 71.222 12.21 0.000234 1.86 2.93 9.17 0.060 Reach I175.277 SYeur 5.1 31.179 31.258 31.224 10.2267 0.000378 2.10 4.50 6.01 0.01 Reach I175.277 Syeur 2.2 31.179 31.302 31.32 0.00127 2.24 7.279 S.923 0.49 Reach 1175.274 Regional 6.1 31.129 31.24 31.24 31.24 0.00027 0.23 1.567 4.23 0.27 Reach 1177.94 SYeur 6.1 31.142 31.124 31.24 31.24													
Resch 1176.229 100 Year 2.4 313.22 313.33 313.43 313.43 313.43 313.44 0.01029 0.83 2.0.22 2.0.50 0.78 Resch1 1175.274 2 Year 31.32 311.78 312.42 312.42 312.42 0.00529 1.36 2.9.9 9.17 0.066 Seach1 1175.274 2 Year 51 311.70 312.42 312.43 0.00529 1.38 3.88 10.58 0.79 Seach1 1175.274 10 Year 31.17 312.48 313.18 0.00747 2.58 8.16 15.20 0.48 Seach1 1175.274 Beglonal 311.79 313.42 313.42 313.45 0.00172 1.61 33.26 0.48 Resch1 1175.274 Beglonal 311.77 312.42 312.41 312.42 0.00077 0.82 1.597 0.41.0 0.28 Resch1 1137.74 12Year 314.43 313.43 312.40 0.00077				1									
Reach 1176.229 Regional 81.1 313.22 314.06 313.02 314.07 01.02 100 100 Reach 1175.274 2Yeer 3.7 311.70 312.42 312.51 0.005.00 1.86 2.93 4.50 10.58 0.79 Reach 1175.274 10Yeer 8.5 311.70 312.58 312.68 10.00575 1.8 3.85 10.38 0.79 Reach 1175.274 10Yeer 8.5 311.70 312.58 313.18 0.00544 1.46 2.96 4.50 0.44 Reach 1175.274 100Yeer 2.8 311.42 312.42 314.48 0.00073 0.80 1.57 4.30 0.29 Reach 1137.74 10Yeer 6.5 311.42 312.24 312.40 0.00073 0.80 2.03 4.23 0.29 Reach 1137.74 10Yeer 5.5 311.42 312.51 312.44 0.00073 0.80 2.23 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
no. no. <td></td>													
Rench1 1175.274 Sysen 6.1 311.79 312.61 312.46 312.81 0.007055 1.8 3.85 10.58 0.79 Reach1 1175.274 15 Year 15.5 311.79 312.84 312.81 0.00477 2.55 8.16 15.29 0.88 Reach1 1175.274 100 Year 32.4 311.79 313.85 0.001621 1.61 382.26 45.86 0.44 Reach1 1175.274 Regional 8.11 311.42 312.42 314.18 0.00027 0.22 4.57.97 0.49 Reach1 1137.794 5 Year 6.1 311.42 312.64 312.54 312.56 0.000027 0.58 2.0.8 0.2.7 Reach1 1137.794 5 Year 5.1 311.42 312.65 0.000027 0.58 2.0.8 0.2.7 Reach1 1137.79 2 Year 3.7 311.43 312.59 0.000627 1.0.8 4.51 4.51 4.51 4.51						22.100	5-0.02	5215			0 1104	20.70	<u>,,, т</u>
Beach1 1175.274 10 Vers 8.5 311.29 312.84<	Reach1	1175.274	2 Year	3.7	311.79	312.42	312.32	312.51	0.005204	1.36	2.93	9.17	0.66
Reach1 1175.274 25 ver 15.5 31.79 312.84 313.31 000747 25.5 31.6 15.29 0.88 Reach1 1175.274 100 ver 32.4 311.9 313.89 313.5 113.25 0.001544 1.46 29.68 43.57 0.43 Reach1 1175.274 Regional 81.1 311.9 314.07 313.42 312.45 0.001544 1.46 2.48 72.97 5.92.3 0.029 Reach1 1137.794 2 vear 3.7 311.42 312.45 312.42 0.000727 0.72 1.01.8 3.93.9 0.22 Reach1 137.794 10 vear 8.5 311.42 312.39 312.81 0.00072 0.72 4.51.0 0.29 Reach1 137.794 10 vear 8.5 311.42 313.89 313.25 313.20 0.00072 1.02 4.51 4.62.9 0.25 Reach1 1103.797 12 vear 313.20 313.20 313.20	Reach1	1175.274											
Bach1 1175.274 50 ver 22.8 31.79 313.29 313.25 0.00154 1.16 29.80 43.57 0.043 Reach1 1175.274 Regional 81.1 311.79 313.80 313.81 313.15 313.50 0.001542 1.61 98.20 0.043 Reach1 1137.794 2 Vear 3.7 311.42 312.42 312.45 0.00073 0.82 1.52.7 41.05 0.22 Reach1 1137.794 10 Vear 3.7 311.42 312.28 0.00077 0.82 1.82.8 0.22 Reach1 1137.794 10 Vear 3.2 312.28 0.00077 0.86 0.8 4.3.5 0.27 Reach1 1137.794 10 Vear 3.2 312.28 313.20 0.00072 0.18 9.4.6 1.3.8 0.27 Reach1 1137.79 2.12 311.42 312.42 312.31 312.5 0.0028 1.29 1.4.0 0.1.0 0.2 0.28 0.28 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
Rench 1175.274 100 verset 2.4. 313.12 313.42 313.45 0.00154 1.61 32.6. 4.5.86 0.444 Reach 1137.794 Regional 81.1 311.79 314.07 313.42 313.42 313.42 313.42 312.45 0.000952 0.79 10.18 30.39 0.29 Reach 1137.794 5 Year 6.1 311.42 312.55 312.25 0.000927 0.79 10.18 30.39 0.29 Reach 1137.794 15 Year 6.5 311.42 312.05 312.41 0.00072 0.86 2.08 4.2.36 0.27 Reach 1137.794 15 Year 3.1.42 313.43 313.05 314.12 0.00072 1.18 54.01 51.01 0.27 Reach 1137.79 10 Year 3.1.3 313.42 313.42 0.00072 1.18 54.01 55.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
Brachl 1175.274 Regional 81.1 311.79 314.07 312.42 314.18 0.00777 2.24 72.79 59.23 0.49 Reachl 1137.794 2 Year 3.7 311.42 312.45 312.45 0.00082 0.79 10.18 39.39 0.29 Reachl 1137.794 1 Year 6.1 311.42 312.56 0.00073 0.82 15.9 41.05 0.28 Reachl 1137.794 1 Year 5.5 311.42 312.93 312.51 0.00073 0.86 0.28 44.35 0.27 Reachl 1137.794 1 Ovear 2.4 311.42 313.93 312.7 313.4 0.00072 1.48 54.01 51.1 0.28 Reachl 1137.794 1 Ovear 2.4 311.42 312.43 312.41 312.43 312.41 312.44 312.43 312.41 312.45 312.44 312.64 312.45 312.44 12.64 0.00348 1.66 6.17	-												
Image Image <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>													
Reach1 1137.794 Sysar 6.1 311.42 312.25 312.35 312.256 0.00027 0.62 15.7 41.05 0.28 Reach1 1137.794 125 year 15.5 311.42 312.63 312.51 312.24 0.000727 0.67 32.31 45.3 0.27 Reach1 1137.794 100 year 2.28 311.42 313.83 312.1 0.000727 0.67 32.31 45.3 0.27 Reach1 1137.794 100 year 2.24 311.42 313.83 312.7 313.40 0.000727 0.67 32.31 45.3 0.028 Reach1 1109.979 Year 3.7 31.75 312.24 312.25 0.000422 1.66 6.17 15.89 0.65 Reach1 1109.979 10 year 8.5 311.75 312.25 312.63 0.00422 1.66 6.17 17.89 0.22 Reach1 1109.979 10 year 8.2 311.75 312.25 <										·			
Reach1 1137.794 10 Year 8.5 311.42 312.66 312.39 312.61 0.000773 0.96 42.30 45.3 0.27 Reach1 1137.794 50 Year 1.55 311.42 312.39 312.21 0.000727 0.97 32.31 45.3 0.27 Reach1 1137.794 50 Year 32.4 311.42 313.38 312.7 313.4 0.000722 1.18 44.51 44.54 0.26 Reach1 1137.794 Norvar 32.4 311.42 312.38 312.5 312.4 0.000722 1.18 94.37 71.71 0.38 Reach1 1109.979 5 Year 6.1 311.75 312.42 312.63 312.68 0.00875 2.33 1.62 0.75 1.64 113.89 0.072 Reach1 1109.979 10 Year 8.5 311.75 312.63 312.88 0.00785 2.33 1.62 316.2 0.76 Reach1 10.07979 100 Year	Reach1	1137.794	2 Year	3.7	311.42	312.4	312.14	312.42	0.000962	0.79	10.18	39.39	0.29
Rach1 1137.794 25 Year 15.5 311.42 312.93 312.51 312.41 0.000727 0.97 32.31 45.3 0.27 Reach1 1137.794 50 Year 2.2.8 311.42 313.31 0.000727 1.18 54.01 51.1 0.29 Reach1 1137.794 Regional 81.1 311.42 313.08 312.07 133.40 0.000727 1.18 54.01 51.1 0.29 Reach1 1137.794 Regional 81.1 311.42 312.48 313.01 0.000727 1.18 54.01 51.1 0.38 Reach1 1109.979 Stear 6.1 311.75 312.42 312.43 312.63 0.00574 1.95 7.72 17.49 0.72 Reach1 1109.979 Stear 5.5 311.75 312.63 312.63 0.00574 1.95 3.88 40.19 1.72 Reach1 1109.979 Stear 5.1 313.57 313.25 312.63 <													
Reach1 1137.794 Software 22.8 311.42 313.9 312.7 313.4 0.00062 1.02 44.51 44.51 42.4 0.029 Reach1 1137.794 Regional 81.1 311.42 313.83 312.7 313.4 0.000722 1.18 54.01 51.1 0.29 Reach1 1109.797 Stever 6.1 311.75 312.23 312.18 312.57 0.003432 1.66 6.17 15.89 0.65 Reach1 1109.979 Stever 6.5 311.75 312.42 312.81 0.00578 2.72 10.49 21.05 0.92 Reach1 1109.979 Stever 15.5 311.75 312.63 312.88 0.007878 2.72 10.49 21.05 0.92 Reach1 1109.979 Stever 2.82 31.63 0.065 2.33 19.62 2.88 0.66 Reach1 110.870 Stever 3.7 311.53 312.81 0.01081 4.5				-									
Beach1 1137.794 100 Year 32.4 311.42 313.38 312.7 313.4 0.000722 1.18 54.01 51.1 0.29 Reach1 1109.979 Year 3.7 311.75 312.31 312.31 312.37 0.003384 1.29 - <													
Reach1 1137.794 Regional 81.1 311.42 314.06 313.05 314.12 0.001119 1.84 94.37 71.71 0.38 Reach1 1109.979 2 Year 3.7 311.75 312.31 312.18 312.37 0.003384 1.29 4.6 13.88 0.55 Reach1 1109.979 10 Year 8.5 311.75 312.42 312.31 312.68 0.007474 1.95 7.57 17.49 0.72 Reach1 1109.979 10 Year 3.2 311.75 313.03 312.88 10.003655 2.33 1.962 2.8.88 0.66 Reach1 1109.979 Royear 3.2 311.75 313.03 312.93 312.93 1.002 2.82 2.35 31.60 0.03655 4.52 38.58 0.019 1.07 Reach1 10.05.705 794r 6.1 31.29 312.43 312.19 312.50 0.0108 0.94 6.71 1.8.87 0.32 Re													
nearth 1109 r													
Reach1 1109.979 5 Year 6.1 311.75 312.42 312.41 312.51 0.004322 1.66 6.17 15.89 0.65 Reach1 1109.979 10 Year 8.5 311.75 312.5 312.4 312.80 0.007378 2.72 17.49 0.72 Reach1 1109.979 50 Year 15.5 311.75 312.63 312.81 313.16 0.003555 2.33 19.62 28.88 0.066 Reach1 1109.979 Roy Year 32.4 311.75 313.55 0.00455 4.52 38.58 40.19 1.07 Reach1 1108.705 2Year 3.7 312.24 312.51 0.001513 1.21 9.03 2.063 0.39 Reach1 1108.705 10 Year 8.5 311.29 312.54 312.40 0.001513 1.21 9.03 2.063 0.39 Reach1 1108.705 10 Year 3.5 312.54 312.44 0.00183 1.41 11.02			0										
Reach1 1109.979 10 Year 8.5 311.75 312.6 312.43 312.63 0.005174 1.95 7.57 17.49 0.72 Reach1 1109.979 25 Year 15.5 311.75 312.63 312.83 0.005787 2.72 10.49 21.05 0.92 Reach1 1109.979 50 Year 2.28 31.15 313.55 313.55 0.006555 2.33 19.62 28.88 0.066 Reach1 1100.979 Regional 81.1 311.75 313.57 313.57 313.50 0.004725 2.82 23.5 31.62 0.76 Reach1 1108.705 2 Year 3.7 311.29 312.44 312.19 0.001513 1.21 9.03 2.66 0.55 Reach1 108.705 5 Year 15.5 311.29 312.51 312.44 0.00183 1.41 11.02 2.12 0.44 Reach1 108.705 5 Year 15.2 312.2 312.41 0.00183				3.7		312.31	312.18	312.37	0.003384	1.29			0.55
Reach1 1109.979 25 Year 15.5 311.75 312.63 312.83 30.00728 2.72 10.49 21.05 0.92 Reach1 1109.979 50 Year 2.8 311.75 313.02 313.15 0.004722 2.82 2.33 13.62 0.067 Reach1 1109.979 Regional 81.1 311.75 313.35 0.004722 2.82 23.5 31.62 0.076 Reach1 1108.705 S Year 3.7 311.29 312.35 10.00188 0.94 6.71 18.87 0.32 Reach1 1108.705 S Year 1.5 311.29 312.45 312.19 312.54 0.00183 1.11 9.03 20.63 0.39 Reach1 1108.705 S Year 1.5.5 311.29 312.54 313.24 0.00183 1.41 11.02 21.92 0.44 Reach1 1108.705 S Year 1.5.5 311.29 312.57 313.42 0.00275 1.85 2.4.7													
Reach1 1109.979 50 Year 2.28 311.75 313.02 312.8 313.16 0.003655 2.33 19.62 28.88 0.66 Reach1 1109.979 Rogional 81.1 311.75 313.57 313.57 314.02 0.004725 2.82 2.82 31.62 0.67 Reach1 1108.070 S Year 3.7 311.29 312.43 312.2 0.008515 1.21 9.03 0.63 0.39 Reach1 108.0705 S Year 6.5 311.29 312.54 312.19 312.54 0.001513 1.41 11.02 21.92 0.44 Reach1 108.075 S Year 6.5 311.29 312.51 313.41 0.001857 1.85 24.7 312.33 0.47 Reach1 108.075 S Year 3.7 313.42 313.42 0.00245 2.55 29.28 33.67 0.55 Reach1 108.075 S Year 3.7 313.42 313.42 313.42													
Reach1 1109.979 100 Year 32.4 31.75 31.315 312.98 31.335 0.004722 2.82 23.5 31.62 0.76 Reach1 1109.979 Regional 81.1 311.75 313.57 313.57 313.20 0.008515 4.52 33.58 4.00 1.07 Reach1 1108.705 2 Year 3.7 311.29 312.45 312.19 312.5 0.00183 1.41 11.02 21.92 0.44 Reach1 1108.705 5 Year 6.5 311.29 312.51 312.31 31.24 0.00183 1.41 11.02 21.92 0.44 Reach1 1108.705 50 Year 8.5 311.29 312.73 312.42 0.00212 1.92 55.48 0.055 Reach1 108.705 10 Year 32.4 313.19 312.85 313.29 0.00258 3.97 42.98 40.28 0.88 Reach1 1085.885 5 Year 6.1 311.42 312.42													
Reach1 1109.979 Regional 81.1 311.75 313.57 314.02 0.008515 4.52 38.58 40.19 1.07 Reach1 1108.705 2 Year 3.7 311.29 312.3 312.3 312.5 0.00188 0.94 6.71 18.87 0.32 Reach1 1108.705 5 Year 6.1 311.29 312.45 312.51 0.00181 1.41 11.02 2.19.2 0.44 Reach1 108.705 5 Year 15.5 311.29 312.57 312.52 312.41 0.001857 1.85 24.7 312.35 0.04 Reach1 108.705 100 Year 32.4 311.29 313.57 313.42 0.00245 2.25 29.28 33.67 0.55 Reach1 108.705 Regional 81.1 311.29 313.57 313.42 313.20 0.00245 2.15 29.28 33.67 0.55 Reach1 1088.85 104er 8.5 311.42 312.24 <t< td=""><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>				1									
ReachIntoIntoIntoIntoIntoIntoIntoIntoReach I1108.705SYear6.1311.29312.45312.19312.360.001031.219.0320.630.39Reach I108.705IOYear8.5311.29312.45312.21312.610.001831.4111.0221.920.44Reach I108.705SOYear15.5311.29312.73312.52312.840.0027121.9215.4825.560.55Reach I108.705SOYear22.8311.29313.05312.65313.140.0018571.8524.77312.300.47Reach I108.705SOYear32.4311.29313.57313.42313.920.0058583.9742.9840.280.88Reach I108.705Regional81.1311.42312.21312.44312.330.001810.847.0221.870.37Reach I1088.85SYear6.1311.42312.24312.44312.460.001990.999.8427.010.4Reach I1088.85SYear6.1311.42312.24312.44312.650.001351.1112.6232.090.42Reach I1088.85SYear5.5311.42312.24312.45313.170.002051.1112.6032.600.38Reach I1088.85SYear15.5311.42312.24312.770.00224 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
Reach1 1108.705 5 Year 6.1 311.29 312.45 312.31 312.51 0.001513 1.21 9.03 20.63 0.39 Reach1 1108.705 10 Year 8.5 311.29 312.54 312.31 312.61 0.00183 1.41 11.02 21.92 0.44 Reach1 1108.705 50 Year 22.8 311.29 313.65 312.66 311.40 0.01857 1.85 24.7 31.23 0.47 Reach1 108.705 Regional 81.1 311.29 313.57 313.42 313.20 0.00245 2.55 29.28 33.67 0.55 Reach1 108.705 Regional 81.1 311.22 312.31 312.45 0.00245 2.55 29.28 33.67 0.55 Reach1 1088.85 2 Year 3.7 311.42 312.24 312.26 0.00199 0.99 9.84 27.01 0.4 Reach1 1088.85 10 Year 8.5 311.42 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
Reach1 1108.705 10 Year 8.5 311.29 312.54 312.31 312.61 0.00133 1.41 11.02 21.92 0.44 Reach1 1108.705 50 Year 15.5 311.29 312.73 312.52 312.44 0.002712 1.92 15.48 25.56 0.55 Reach1 1108.705 50 Year 22.8 311.29 313.19 312.85 313.24 0.00245 2.25 2.928 33.67 0.55 Reach1 108.705 Regional 81.1 311.29 313.47 313.42 313.29 0.00245 2.55 2.928 3.367 0.55 Reach1 108.705 Regional 81.1 311.22 312.24 312.46 0.00199 0.99 9.84 27.01 0.44 Reach1 1088.85 10 Year 8.5 311.42 312.27 312.46 0.00199 0.99 9.84 27.01 0.44 Reach1 1088.85 10 Year 8.5 311.42													
Reach1 1108.705 25 Year 15.5 311.29 312.73 312.52 312.84 0.002712 1.92 15.48 25.56 0.55 Reach1 1108.705 50 Year 22.8 311.19 312.05 312.65 313.14 0.001857 1.85 24.7 312.30 0.47 Reach1 1108.705 100 Year 32.4 311.29 313.42 313.29 0.00245 2.25 29.28 33.67 0.55 Reach1 108.805 100 Year 3.4 311.29 312.84 313.29 0.005858 3.97 42.98 40.28 0.88 Reach1 1088.885 2 Year 3.7 311.42 312.24 312.26 0.00181 0.84 7.02 21.87 0.37 Reach1 1088.885 10 Year 3.5 311.42 312.65 313.10 0.00181 1.11 12.62 32.09 0.42 Reach1 1088.885 10 Year 3.5 311.42 312.65 313.10				-									
Reach1 1108.705 50 Year 22.8 311.29 313.05 312.65 313.14 0.001857 1.85 24.7 31.23 0.047 Reach1 1108.705 Regonal 81.1 311.29 313.39 312.85 313.32 0.00245 2.25 29.28 33.67 0.55 Reach1 108.705 Reginal 81.1 311.29 313.32 0.00588 3.97 42.98 40.28 0.087 Reach1 1088.885 2 Year 3.7 311.42 312.24 312.24 0.00199 0.99 9.84 27.01 0.4 Reach1 1088.885 10 Year 8.5 311.42 312.25 312.31 0.002244 1.36 20.06 44.03 0.46 Reach1 1088.885 50 Year 32.4 311.42 312.57 313.26 0.001315 1.39 43.39 50.26 0.38 Reach1 1088.885 50 Year 32.4 311.20 312.77 313.26 0.001315													
Reach1 1108.705 100 Year 32.4 311.29 313.19 312.85 313.32 0.00245 2.25 29.28 33.67 0.55 Reach1 1108.705 Regional 81.1 311.29 313.57 313.42 313.92 0.00585 3.97 42.98 40.28 0.88 Reach1 1088.885 2 Year 3.7 311.42 312.44 312.33 0.00181 0.84 7.02 21.87 0.37 Reach1 1088.885 5 Year 6.1 311.42 312.42 312.45 0.002053 1.1 12.62 32.09 0.42 Reach1 1088.885 10 Year 8.5 311.42 312.72 312.45 0.002053 1.1 12.62 32.09 0.42 Reach1 1088.885 10 Year 32.4 313.26 313.17 0.002054 1.39 43.39 50.26 0.38 Reach1 1088.885 100 Year 3.2 313.12 313.27 0.00135 1.39				1									
Reach1 1108.705 Regional 81.1 311.29 313.37 313.42 313.92 0.005858 3.97 42.98 40.28 0.088 Reach1 1088.85 2 Year 3.7 311.42 312.31 312.14 312.33 0.00181 0.84 7.02 21.87 0.37 Reach1 1088.855 5 Year 6.1 311.42 312.24 312.46 0.00199 0.99 9.84 27.01 0.42 Reach1 1088.855 5 Year 6.5 311.42 312.25 312.56 0.002053 1.1 12.62 32.09 0.42 Reach1 1088.85 50 Year 2.8 311.42 313.06 312.56 313.1 0.00186 1.17 35.93 48.1 0.33 Reach1 1088.85 10 Year 32.4 311.42 313.67 313.77 0.00254 1.39 43.39 50.26 0.38 Reach1 1038.914 2 Year 3.7 311.77 312.02 3													
Reach1 1088.885 5 Year 6.1 311.42 312.42 312.46 0.001999 0.99 9.84 27.01 0.44 Reach1 1088.885 10 Year 8.5 311.42 312.52 312.3 312.56 0.002053 1.1 12.62 32.09 0.42 Reach1 1088.885 25 Year 15.5 311.42 312.72 312.43 312.77 0.002244 1.36 20.16 44.03 0.46 Reach1 1088.885 50 Year 32.4 311.42 313.22 312.71 313.26 0.001315 1.39 43.39 50.26 0.38 Reach1 1088.885 Rejonal 81.1 311.42 313.22 312.71 131.26 0.01315 1.39 43.39 50.26 0.38 Reach1 1033.914 2 Year 3.7 311.77 312.02 312.23 0.01315 1.79 4.3 1.71 1.01 Reach1 1033.914 D Year 8.5 311.77 <													
Reach1 1088.885 5 Year 6.1 311.42 312.42 312.46 0.001999 0.99 9.84 27.01 0.44 Reach1 1088.885 10 Year 8.5 311.42 312.52 312.3 312.56 0.002053 1.1 12.62 32.09 0.42 Reach1 1088.885 25 Year 15.5 311.42 312.72 312.43 312.77 0.002244 1.36 20.16 44.03 0.46 Reach1 1088.885 50 Year 32.4 311.42 313.22 312.71 313.26 0.001315 1.39 43.39 50.26 0.38 Reach1 1088.885 Rejonal 81.1 311.42 313.22 312.71 131.26 0.01315 1.39 43.39 50.26 0.38 Reach1 1033.914 2 Year 3.7 311.77 312.02 312.23 0.01315 1.79 4.3 1.71 1.01 Reach1 1033.914 D Year 8.5 311.77 <													
Reach1 1088.885 10 Year 8.5 311.42 312.52 312.33 312.56 0.002053 1.1 12.62 32.09 0.42 Reach1 1088.885 25 Year 15.5 311.42 312.72 312.43 312.77 0.002244 1.36 20.16 44.03 0.46 Reach1 1088.885 50 Year 22.8 311.42 313.06 312.56 313.1 0.001086 1.17 35.93 48.1 0.33 Reach1 1088.885 100 Year 32.4 311.42 313.22 312.71 313.26 0.001315 1.39 43.39 50.26 0.38 Reach1 1088.885 Regional 81.1 311.42 313.22 312.71 313.26 0.001315 1.39 43.39 50.26 0.38 Reach1 1033.914 2 Year 3.7 312.02 312.01 0.014463 1.56 3.01 1.61.4 1.01 Reach1 1033.914 10 Year 8.5 311.77				-									
Reach1 1088.885 25 Year 15.5 311.42 312.72 312.43 312.77 0.002244 1.36 20.16 44.03 0.46 Reach1 1088.885 50 Year 22.8 311.42 313.06 312.56 313.1 0.001086 1.17 35.93 48.1 0.33 Reach1 1088.885 100 Year 32.4 311.42 313.22 312.71 313.26 0.001315 1.39 43.39 50.26 0.38 Reach1 1088.885 Regional 81.1 311.42 313.20 312.17 0.002526 2.32 67.21 58.16 0.54 Mach1 1033.914 2 Year 3.7 311.77 312.09 312.10 0.01415 1.56 3.01 16.14 1.01 Reach1 1033.914 10 Year 8.5 311.77 312.09 312.33 0.012419 1.97 5.46 18.04 1.01 Reach1 1033.914 10 Year 32.4 311.77 312.39													
Reach1 1088.885 50 Year 22.8 311.42 313.06 312.56 313.1 0.001086 1.17 35.93 48.1 0.33 Reach1 1088.885 100 Year 32.4 311.42 313.22 312.71 313.26 0.001315 1.39 43.39 50.26 0.38 Reach1 1088.885 Regional 81.1 311.42 313.66 313.12 313.77 0.002526 2.32 67.21 58.16 0.54 Reach1 1033.914 2 Year 3.7 311.77 312.02 312.02 312.11 0.01463 1.56 3.01 16.14 1.01 Reach1 1033.914 10 Year 8.5 311.77 312.09 312.33 0.012419 1.97 5.46 18.04 1.01 Reach1 1033.914 2 Year 15.5 311.77 312.39 312.33 0.012419 1.97 5.46 18.04 1.01 Reach1 1033.914 50 Year 22.8 311.77													
Reach1 108.885 100 Year 32.4 311.42 313.22 312.71 313.26 0.001315 1.39 43.39 50.26 0.38 Reach1 1088.885 Regional 81.1 311.42 313.66 313.12 313.77 0.002526 2.32 67.21 58.16 0.54 Reach1 1033.914 2.Year 3.7 311.77 312.02 312.02 312.11 0.01463 1.56 3.01 16.14 1.01 Reach1 1033.914 5.Year 6.1 311.77 312.09 312.23 0.01315 1.79 4.3 17.21 1.01 Reach1 1033.914 10.Year 8.5 311.77 312.09 312.33 0.01419 1.97 5.46 18.04 1.01 Reach1 1033.914 2.Year 1.5.5 311.77 312.39 312.33 0.01676 1.53 24.12 33.07 0.45 Reach1 1033.914 100 Year 32.4 311.77 312.64				-									
ImageImageImageImageImageImageImageImageImageImageImageImageReach11033.9142 Year3.7311.77312.02312.02312.110.0144631.563.0116.141.01Reach11033.9145 Year6.1311.77312.09312.09312.230.0131521.794.317.211.01Reach11033.91410 Year8.5311.77312.09312.30312.330.0124191.975.4618.041.01Reach11033.91425 Year15.5311.77312.39312.33312.570.006827210.0821.240.81Reach11033.91450 Year22.8311.77312.96312.47313.020.0016761.5324.1233.070.45Reach11033.914100 Year32.4311.77313.07312.64313.160.0024271.9427.9337.690.54Reach11033.914Regional81.1311.77313.47313.26313.620.0031392.6553.9167.530.65Reach11033.082 Year3.731.061311.43311.43311.450.0044991.562.759.190.63Reach11033.085 Year6.1310.61311.62311.890.0028321.666.412.550.54Reach11033.0810 Year8.5310.61311.7													
Reach11033.9145 Year6.1311.77312.09312.09312.230.0131521.794.317.211.01Reach11033.91410 Year8.5311.77312.16312.330.0124191.975.4618.041.01Reach11033.91425 Year15.5311.77312.39312.33312.570.006827210.0821.240.81Reach11033.91450 Year22.8311.77312.96312.47313.020.0016761.5324.1233.070.45Reach11033.914100 Year32.4311.77313.07312.64313.160.0024271.9427.9337.690.54Reach11033.914Regional81.1311.77313.07312.64313.620.003192.6553.9167.530.65Reach11033.914Regional81.1311.77313.07313.26313.620.003192.6553.9167.530.65Reach11033.082 Year3.7310.61311.43311.5311.540.0044991.562.759.190.63Reach11033.082 Year3.7310.61311.62311.62311.730.0034071.624.5910.670.57Reach11033.0810 Year8.5310.61311.43311.85312.630.007071.1918.3521.760.29Reach11033.0850 Year15.5					311.42				0.002526			58.16	0.54
Reach11033.9145 Year6.1311.77312.09312.09312.230.0131521.794.317.211.01Reach11033.91410 Year8.5311.77312.16312.330.0124191.975.4618.041.01Reach11033.91425 Year15.5311.77312.39312.33312.570.006827210.0821.240.81Reach11033.91450 Year22.8311.77312.96312.47313.020.0016761.5324.1233.070.45Reach11033.914100 Year32.4311.77313.07312.64313.160.0024271.9427.9337.690.54Reach11033.914Regional81.1311.77313.07312.64313.620.003192.6553.9167.530.65Reach11033.914Regional81.1311.77313.07313.26313.620.003192.6553.9167.530.65Reach11033.082 Year3.7310.61311.43311.5311.540.0044991.562.759.190.63Reach11033.082 Year3.7310.61311.62311.62311.730.0034071.624.5910.670.57Reach11033.0810 Year8.5310.61311.43311.85312.630.007071.1918.3521.760.29Reach11033.0850 Year15.5				_							_		
Reach11033.91410 Year8.5311.77312.16312.330.0124191.975.4618.041.01Reach11033.91425 Year15.5311.77312.39312.33312.570.006827210.0821.240.81Reach11033.91450 Year22.8311.77312.96312.47313.020.0016761.5324.1233.070.45Reach1103.914100 Year32.4311.77313.07312.64313.160.0024271.9427.9337.690.54Reach11033.914Regional81.1311.77313.07312.64313.620.0031392.6553.9167.530.65Reach11033.914Regional81.1311.77313.47313.26311.540.0044991.562.759.190.63Reach11033.3082 Year3.7310.61311.43311.53311.540.0034071.624.5910.670.57Reach11033.3085 Year6.1310.61311.77311.62311.890.0028321.666.412.550.54Reach11033.30825 Year15.5310.61312.48313.020.007071.1918.3521.760.29Reach11033.30825 Year15.5310.61312.97312.03313.020.005641.2631.0333.610.27Reach11033.30850 Year22.8310													
Reach11033.91425 Year15.5311.77312.39312.33312.570.006827210.0821.240.81Reach11033.91450 Year22.8311.77312.96312.47313.020.0016761.5324.1233.070.45Reach11033.914100 Year32.4311.77313.07312.64313.160.0024271.9427.9337.690.54Reach11033.914Regional81.1311.77313.07312.64313.620.0031392.6553.9167.530.65Reach11033.914Regional81.1311.77313.47313.26313.620.0031392.6553.9167.530.65Reach11033.082 Year3.7310.61311.43311.3311.540.0044991.562.759.190.63Reach11033.085 Year6.1310.61311.62311.52311.730.0034071.624.5910.670.57Reach11033.30810 Year8.5310.61311.77311.62311.890.0028321.666.412.550.54Reach11033.30810 Year8.55310.61312.97312.03313.020.007071.1918.3521.760.29Reach11033.30850 Year15.5310.61312.97312.03313.020.005441.2631.0333.610.27Reach11033.30810													
Reach11033.91450 Year22.8311.77312.96312.47313.020.0016761.5324.1233.070.45Reach11033.914100 Year32.4311.77313.07312.64313.160.0024271.9427.9337.690.54Reach11033.914Regional81.1311.77313.07312.64313.620.0031392.6553.9167.530.65Reach11033.914Regional81.1311.77313.47313.26313.620.0031392.6553.9167.530.65Reach11033.3082 Year3.7310.61311.43311.3311.540.0044991.562.759.190.63Reach11033.3085 Year6.1310.61311.62311.52311.730.0034071.624.5910.670.57Reach11033.30810 Year8.5310.61311.77311.62311.850.0028321.666.412.550.54Reach11033.30820 Year15.5310.61312.48311.85312.530.007071.1918.3521.760.29Reach11033.30850 Year22.8310.61312.97312.03313.020.005641.2631.0333.610.27Reach11033.30850 Year22.8310.61312.97312.03313.020.0005641.6934.9438.510.36Reach11033.308 <t< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	-												
Reach11033.914100 Year32.4311.77313.07312.64313.160.0024271.9427.9337.690.54Reach11033.914Regional81.1311.77313.47313.26313.620.0031392.6553.9167.530.65Meach11033.3082 Year3.7310.61311.47313.26313.26313.620.0031392.6553.9167.530.65Reach11033.3082 Year3.7310.61311.43311.3311.540.0044991.562.759.190.63Reach11033.3085 Year6.1310.61311.62311.52311.730.0034071.624.5910.670.57Reach11033.30810 Year8.5310.61311.77311.62311.830.0028321.666.412.550.54Reach11033.30825 Year15.5310.61312.48311.85312.530.0007071.1918.3521.760.29Reach11033.30825 Year15.5310.61312.97312.03313.020.0005641.2631.0333.610.27Reach11033.30850 Year22.8310.61312.97312.03313.020.0005641.2631.0333.610.27Reach11033.308100 Year32.4310.61312.97312.03313.020.0005641.2631.0333.610.27Reach1													
Reach11033.914Regional81.1311.77313.47313.26313.620.0031392.6553.9167.530.65Reach11033.3082 Year3.7310.61311.43311.3311.540.0044991.562.759.190.63Reach11033.3085 Year6.1310.61311.62311.52311.730.0034071.624.5910.670.57Reach11033.30810 Year8.5310.61311.77311.62311.890.0028321.666.412.550.54Reach11033.30825 Year15.5310.61312.48311.85312.530.0007071.1918.3521.760.29Reach11033.30850 Year22.8310.61312.97312.03313.020.0005641.2631.0333.610.27Reach11033.308100 Year32.4310.61312.97312.24313.160.0009471.6934.9438.510.36													
Reach11033.3085 Year6.1310.61311.62311.52311.730.0034071.624.5910.670.57Reach11033.30810 Year8.5310.61311.77311.62311.890.0028321.666.412.550.54Reach11033.30825 Year15.5310.61312.48311.85312.530.0007071.1918.3521.760.29Reach11033.30850 Year22.8310.61312.97312.03313.020.0005641.2631.0333.610.27Reach11033.308100 Year32.4310.61313.08312.24313.160.0009471.6934.9438.510.36	Reach1	1033.914	Regional	81.1	311.77	313.47	313.26		0.003139	2.65	53.91	67.53	0.65
Reach11033.3085 Year6.1310.61311.62311.52311.730.0034071.624.5910.670.57Reach11033.30810 Year8.5310.61311.77311.62311.890.0028321.666.412.550.54Reach11033.30825 Year15.5310.61312.48311.85312.530.0007071.1918.3521.760.29Reach11033.30850 Year22.8310.61312.97312.03313.020.0005641.2631.0333.610.27Reach11033.308100 Year32.4310.61313.08312.24313.160.0009471.6934.9438.510.36		4005 -			0.17 -			0	0.000		-	a : -	
Reach11033.30810 Year8.5310.61311.77311.62311.890.0028321.666.412.550.54Reach11033.30825 Year15.5310.61312.48311.85312.530.0007071.1918.3521.760.29Reach11033.30850 Year22.8310.61312.97312.03313.020.0005641.2631.0333.610.27Reach11033.308100 Year32.4310.61313.08312.24313.160.0009471.6934.9438.510.36													
Reach1 1033.308 25 Year 15.5 310.61 312.48 311.85 312.53 0.000707 1.19 18.35 21.76 0.29 Reach1 1033.308 50 Year 22.8 310.61 312.97 312.03 313.02 0.000564 1.26 31.03 33.61 0.27 Reach1 1033.308 100 Year 32.4 310.61 312.97 313.16 0.000947 1.69 34.94 38.51 0.36													
Reach1 1033.308 50 Year 22.8 310.61 312.97 312.03 313.02 0.000564 1.26 31.03 33.61 0.27 Reach1 1033.308 100 Year 32.4 310.61 313.08 312.24 313.16 0.000947 1.69 34.94 38.51 0.36													
Reach1 1033.308 100 Year 32.4 310.61 313.08 312.24 313.16 0.000947 1.69 34.94 38.51 0.36													
Reach1 1033.308 Regional 81.1 310.61 313.46 312.98 313.62 0.001906 2.66 60.15 67.37 0.52													
	Reach1	1033.308	Regional	81.1	310.61	313.46	312.98	313.62	0.001906	2.66	60.15	67.37	0.52

		(1	07.1			a ::						5
Reach	River Sta	Profile	Q Total (m3/s)	Min Ch El (m)	W.S. Elev (m)	Crit W.S. (m)	E.G. Elev (m)	E.G. Slope (m/m)	Vel Chnl (m/s)	Flow Area (m2)	Top Width (m)	Froude # Chl
Reach1	1010.387	2 Year	3.7	310.42	311.47	310.91	311.49	0.00046	0.63	6.45	10.8	0.22
Reach1	1010.387	5 Year	6.1	310.42	311.65	311.06	311.68	0.00040	0.82	8.56	13.19	0.22
Reach1	1010.387	10 Year	8.5	310.42	311.8	311.19	311.84	0.000691	0.96	10.68	15.31	0.28
Reach1	1010.387	25 Year	15.5	310.42	312.48	311.47	312.51	0.00032	0.89	24.24	25.34	0.21
Reach1	1010.387	50 Year	22.8	310.42	312.98	311.71	313	0.00022	0.86	45.14	60.11	0.18
Reach1		100 Year	32.4	310.42	313.1	311.97	313.13	0.000319	1.07	52.69	67.68	0.22
Reach1	1010.387	Regional	81.1	310.42	313.49	312.71	313.57	0.000704	1.75	83.53	88.96	0.33
Reach1	998.545	2 Year	3.7	310.34	311.47	310.69	311.49	0.000231	0.54	6.87	9.26	0.16
Reach1	998.545 998.545	5 Year	6.1	310.34	311.47	310.89	311.49	0.000231	0.54	7.94	9.26	0.16
Reach1	998.545	10 Year	8.5	310.34	311.78	310.94	311.83	0.000533	0.97	8.8	9.84	0.22
Reach1	998.545	25 Year	15.5	310.34	312.43	311.22	312.5	0.000508	1.21	12.82	11.05	0.27
Reach1	998.545	50 Year	22.8	310.34	312.97	311.47	313	0.000215	0.9	36.66	54.64	0.18
Reach1	998.545	100 Year	32.4	310.34	313.09	311.77	313.13	0.000275	1.04	48.51	82.92	0.2
Reach1	998.545	Regional	81.1	310.34	313.48	312.97	313.56	0.000554	1.62	84.92	99.63	0.3
Reach1	993.3976		Bridge									
Roach1	987.5314	2 Year	3.7	310.49	311.44	310.85	311.46	0.000437	0.65	5.68	9.8	0.22
Reach1 Reach1		5 Year	6.1	310.49	311.44	310.85	311.40	0.000437	0.83	6.47	9.8 10.4	0.22
Reach1	1	10 Year	8.5	310.49	311.63	311.1	311.71	0.001204	1.23	6.9	10.4	0.25
Reach1		25 Year	15.5	310.49	311.66	311.38	311.9	0.00371	2.19	7.06	10.85	0.66
Reach1	987.5314	50 Year	22.8	310.49	311.63	311.63	312.19	0.008614	3.3	6.91	10.73	1
Reach1		100 Year	32.4	310.49	311.93	311.93	312.63	0.007942	3.7	8.75	12.12	1
Reach1	987.5314	Regional	81.1	310.49	312.81	312.81	313.14	0.002925	3.01	39.77	54.6	0.65
D	000.01-	2.4	-	242.25	044.55	044.55	044.55	0.000.00	4		40.45	
Reach1	982.615	2 Year	5.1	310.87	311.33	311.33	311.44	0.008491	1.74	4.2	18.13	0.84
Reach1 Reach1	982.615 982.615	5 Year 10 Year	9 12.2	310.87 310.87	311.44 311.51	311.44 311.51	311.58 311.68	0.0087	2.05 2.26	6.39 7.85	20.26 21.18	0.88 0.92
Reach1 Reach1	982.615	25 Year	12.2	310.87	311.51 311.64	311.51	311.68	0.009003	2.26	10.63	21.18	0.92
Reach1	982.615	50 Year	26.7	310.87	311.75	311.75	312.02	0.009753	2.92	13.24	23.97	1.01
	982.615	100 Year	36.5	310.87	311.88	311.88		0.009521	3.18	16.51	24.92	1.02
Reach1	982.615	Regional	86.6	310.87	312.25	312.25	312.96	0.015524	5	26.25	30.87	1.37
Reach1	980.8696	2 Year	5.1	309.8	310.58	310.43	310.75	0.006505	1.83	2.78	4.15	0.72
Reach1		5 Year	9	309.8	310.7	310.7	311.08	0.012358	2.72	3.3	4.34	1
Reach1	980.8696 980.8696	10 Year 25 Year	12.2 19.2	309.8 309.8	310.93 311.31	310.93 311.31	311.33 311.59	0.009873 0.005347	2.8 2.57	4.53 10.35	8.57 19.41	0.91 0.71
Reach1	1	50 Year	26.7	309.8	311.31	311.31	311.78	0.005566	2.37	13.66	21.47	0.71
	980.8696		36.5	309.8	311.63	311.63	311.99	0.005903	3.12	17.36	23.57	0.74
Reach1			86.6	309.8	312.12	312.12	312.73	0.008306	4.4	30.26	29.69	0.96
Reach1		2 Year	5.1	309.94	310.4	310.4	310.5	0.007342	1.65	4.67	22.27	0.79
Reach1		5 Year	9	309.94	310.5	310.5	310.58	0.005861	1.68	8.94	36.38	0.73
Reach1		10 Year	12.2	309.94	310.53	310.53	310.64	0.007885	2.02	10	36.93	0.85
Reach1	947.0903 947.0903	25 Year 50 Year	19.2 26.7	309.94 309.94	310.61 310.69	310.61 310.69	310.76 310.87	0.008943 0.0096	2.35 2.62	13.16 16.12	38.51 39.94	0.93 0.98
Reach1		100 Year	36.5	309.94	310.05	310.77	310.99	0.009994	2.88	19.64	41.24	1.02
Reach1	947.0903	Regional	86.6	309.94	312.06	310.82	312.06	0.000007	0.14	627.3	263.78	0.03
		0										
Reach1	943.9661	2 Year	5.1	309.16	310.11	309.81	310.16	0.001283	1.05	6.72	16.28	0.36
	943.9661	5 Year	9	309.16	310.25	310.03	310.33	0.001944	1.42	9.2	19.57	0.45
		10 Year	12.2	309.16	310.34	310.14	310.44	0.002353	1.66	11.01	21.65	0.51
		25 Year	19.2	309.16	310.49	310.33	310.63	0.002997	2.04	14.57	25.27	0.58
Reach1 Reach1	943.9661 943.9661	50 Year 100 Year	26.7 36.5	309.16 309.16	310.53 310.55	310.48 310.55	310.67 310.79	0.003363 0.005801	2.2 2.92	20.53 21.16	37.14 37.43	0.62 0.82
Reach1	943.9661	Regional	86.6	309.16	312.06	310.33	312.06	0.0000006	0.16	641.23	264.59	0.82
									-			
Reach1	914.451	2 Year	5.1	309.62	309.97	309.97	310.07	0.011939	1.79	3.95	17.51	0.97
Reach1	914.451	5 Year	9	309.62	310.07	310.07	310.21	0.011864	2.13	5.9	19.77	1.01
Reach1	914.451	10 Year	12.2	309.62	310.14	310.14	310.31	0.011614	2.32	7.36	21.24	1.02
Reach1	914.451	25 Year	19.2	309.62	310.27	310.27	310.48	0.011258	2.65	10.28	23.89	1.05
Reach1	914.451 914.451	50 Year 100 Year	26.7 36.5	309.62 309.62	310.63 310.47	310.39	310.63	0.000004	0.07	349.05	234.36 232.8	0.02
Reach1 Reach1	914.451	Regional	36.5 86.6	309.62	310.47	310.47 310.47	310.47 312.06	0.000011	0.1 0.13	312.31 700.5	232.8	0.03
neuciti	J17.4J1	ncoionai	00.0	505.02	512.00	510.47	512.00	0.000000	0.10	, 50.5	207.11	5.05
Reach1	1	2 Year	5.1	309.02	309.76	309.76	309.93	0.00686	1.89	3.26	11.68	0.75
	913.6924	21001		309.02	309.97	309.97	310.14	0.005721	2.07	6.18	17.76	0.71
Reactif	913.6924 913.6924	5 Year	9	509.02	505.57							
Reach1	913.6924 913.6924	5 Year 10 Year	12.2	309.02	310.06	310.06	310.25	0.006038	2.28	7.9	19.83	0.75
Reach1 Reach1	913.6924 913.6924 913.6924	5 Year 10 Year 25 Year	12.2 19.2	309.02 309.02	310.06 310.21	310.21	310.44	0.006417	2.6	11.24	19.83 23.04	0.79
Reach1 Reach1 Reach1	913.6924 913.6924 913.6924 913.6924	5 Year 10 Year 25 Year 50 Year	12.2 19.2 26.7	309.02 309.02 309.02	310.06 310.21 310.34	310.21 310.34	310.44 310.6	0.006417 0.006751	2.6 2.87	11.24 14.37	19.83 23.04 25.67	0.79 0.82
Reach1 Reach1 Reach1 Reach1	913.6924 913.6924 913.6924 913.6924 913.6924	5 Year 10 Year 25 Year 50 Year 100 Year	12.2 19.2 26.7 36.5	309.02 309.02 309.02 309.02	310.06 310.21 310.34 310.46	310.21 310.34 310.46	310.44 310.6 310.46	0.006417 0.006751 0.000011	2.6 2.87 0.12	11.24 14.37 313.82	19.83 23.04 25.67 233.08	0.79 0.82 0.03
Reach1 Reach1 Reach1 Reach1	913.6924 913.6924 913.6924 913.6924	5 Year 10 Year 25 Year 50 Year	12.2 19.2 26.7	309.02 309.02 309.02	310.06 310.21 310.34	310.21 310.34	310.44 310.6	0.006417 0.006751	2.6 2.87	11.24 14.37	19.83 23.04 25.67	0.79 0.82
Reach1 Reach1 Reach1 Reach1 Reach1	913.6924 913.6924 913.6924 913.6924 913.6924 913.6924	5 Year 10 Year 25 Year 50 Year 100 Year Regional	12.2 19.2 26.7 36.5 86.6	309.02 309.02 309.02 309.02 309.02	310.06 310.21 310.34 310.46 312.06	310.21 310.34 310.46 310.46	310.44 310.6 310.46 312.06	0.006417 0.006751 0.000011 0.000005	2.6 2.87 0.12 0.13	11.24 14.37 313.82 704.61	19.83 23.04 25.67 233.08 267.24	0.79 0.82 0.03 0.02
Reach1 Reach1 Reach1 Reach1 Reach1 Reach1	913.6924 913.6924 913.6924 913.6924 913.6924	5 Year 10 Year 25 Year 50 Year 100 Year	12.2 19.2 26.7 36.5	309.02 309.02 309.02 309.02	310.06 310.21 310.34 310.46 312.06 309.71	310.21 310.34 310.46	310.44 310.6 310.46 312.06 309.71	0.006417 0.006751 0.000011	2.6 2.87 0.12	11.24 14.37 313.82 704.61 214.8	19.83 23.04 25.67 233.08 267.24 239.29	0.79 0.82 0.03
Reach1 Reach1 Reach1 Reach1 Reach1 Reach1 Reach1	913.6924 913.6924 913.6924 913.6924 913.6924 913.6924 913.6924 847.8298	5 Year 10 Year 25 Year 50 Year 100 Year Regional 2 Year	12.2 19.2 26.7 36.5 86.6 5.1	309.02 309.02 309.02 309.02 309.02 308.3	310.06 310.21 310.34 310.46 312.06	310.21 310.34 310.46 310.46 308.71	310.44 310.6 310.46 312.06	0.006417 0.006751 0.000011 0.000005 0.000001	2.6 2.87 0.12 0.13 0.03	11.24 14.37 313.82 704.61	19.83 23.04 25.67 233.08 267.24	0.79 0.82 0.03 0.02 0.01
Reach1 Reach1 Reach1 Reach1 Reach1 Reach1 Reach1 Reach1	913.6924 913.6924 913.6924 913.6924 913.6924 913.6924 913.6924 847.8298 847.8298	5 Year 10 Year 25 Year 50 Year 100 Year Regional 2 Year 5 Year	12.2 19.2 26.7 36.5 86.6 5.1 9	309.02 309.02 309.02 309.02 309.02 308.3 308.3	310.06 310.21 310.34 310.46 312.06 309.71 309.83	310.21 310.34 310.46 310.46 308.71 308.86	310.44 310.6 310.46 312.06 309.71 309.83	0.006417 0.006751 0.000011 0.000005 0.000001 0.000002	2.6 2.87 0.12 0.13 0.03 0.05	11.24 14.37 313.82 704.61 214.8 243.54	19.83 23.04 25.67 233.08 267.24 239.29 241.05	0.79 0.82 0.03 0.02 0.01 0.01
Reach1 Reach1 Reach1 Reach1 Reach1 Reach1 Reach1 Reach1 Reach1 Reach1	913.6924 913.6924 913.6924 913.6924 913.6924 913.6924 913.6924 847.8298 847.8298 847.8298 847.8298 847.8298	5 Year 10 Year 25 Year 100 Year Regional 2 Year 5 Year 10 Year 25 Year 50 Year	12.2 19.2 26.7 36.5 86.6 5.1 9 12.2 19.2 26.7	309.02 309.02 309.02 309.02 309.02 308.3 308.3 308.3 308.3 308.3 308.3	310.06 310.21 310.34 310.46 312.06 309.71 309.83 309.9 310.02 310.17	310.21 310.34 310.46 310.46 308.71 308.86 308.97 309.22 309.31	310.44 310.6 310.46 312.06 309.71 309.83 309.9 310.02 310.17	0.006417 0.000751 0.000011 0.000005 0.000001 0.000002 0.000002 0.000004	2.6 2.87 0.12 0.13 0.03 0.05 0.06	11.24 14.37 313.82 704.61 214.8 243.54 260.76 290.21 326.06	19.83 23.04 25.67 233.08 267.24 239.29 241.05 241.6 241.94 242.36	0.79 0.82 0.03 0.02 0.01 0.01 0.02
Reach1 Reach1 Reach1 Reach1 Reach1 Reach1 Reach1 Reach1 Reach1 Reach1 Reach1	913.6924 913.6924 913.6924 913.6924 913.6924 913.6924 913.6924 847.8298 847.8298 847.8298 847.8298 847.8298 847.8298	5 Year 10 Year 25 Year 100 Year Regional 2 Year 5 Year 10 Year 25 Year 50 Year 100 Year	12.2 19.2 26.7 36.5 86.6 5.1 9 12.2 19.2 26.7 36.5	309.02 309.02 309.02 309.02 309.02 308.3 308.3 308.3 308.3 308.3 308.3	310.06 310.21 310.34 310.46 312.06 309.71 309.83 309.9 310.02 310.17 310.29	310.21 310.34 310.46 310.46 308.71 308.86 308.97 309.22 309.31 309.31	310.44 310.6 310.46 312.06 309.71 309.83 309.9 310.02 310.17 310.29	0.006417 0.000751 0.000011 0.000005 0.000002 0.000002 0.000004 0.000005 0.000008	2.6 2.87 0.12 0.13 0.03 0.05 0.06 0.09 0.1 0.13	11.24 14.37 313.82 704.61 214.8 243.54 260.76 290.21 326.06 356.64	19.83 23.04 25.67 233.08 267.24 239.29 241.05 241.6 241.94 242.36 242.71	0.79 0.82 0.03 0.02 0.01 0.01 0.02 0.02 0.03 0.03
Reach1 Reach1 Reach1 Reach1 Reach1 Reach1 Reach1 Reach1 Reach1 Reach1	913.6924 913.6924 913.6924 913.6924 913.6924 913.6924 913.6924 847.8298 847.8298 847.8298 847.8298 847.8298	5 Year 10 Year 25 Year 100 Year Regional 2 Year 5 Year 10 Year 25 Year 50 Year	12.2 19.2 26.7 36.5 86.6 5.1 9 12.2 19.2 26.7	309.02 309.02 309.02 309.02 309.02 308.3 308.3 308.3 308.3 308.3 308.3	310.06 310.21 310.34 310.46 312.06 309.71 309.83 309.9 310.02 310.17	310.21 310.34 310.46 310.46 308.71 308.86 308.97 309.22 309.31	310.44 310.6 310.46 312.06 309.71 309.83 309.9 310.02 310.17	0.006417 0.000751 0.000011 0.000005 0.000001 0.000002 0.000002 0.000004	2.6 2.87 0.12 0.13 0.03 0.05 0.06 0.09 0.1	11.24 14.37 313.82 704.61 214.8 243.54 260.76 290.21 326.06	19.83 23.04 25.67 233.08 267.24 239.29 241.05 241.6 241.94 242.36	0.79 0.82 0.03 0.02 0.01 0.01 0.02 0.02 0.02 0.03

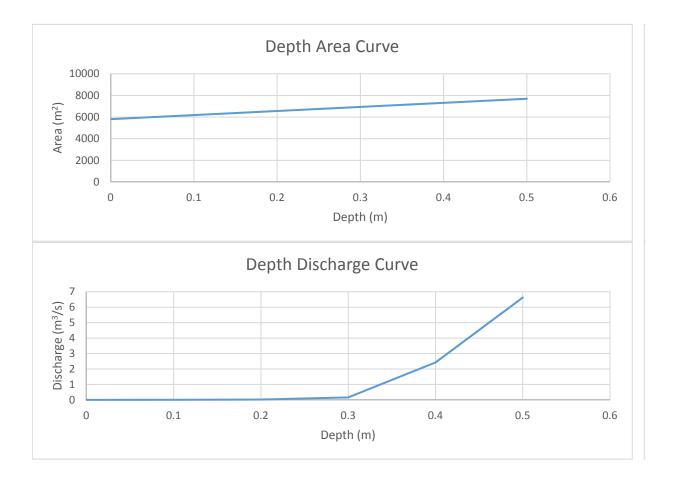
Deach	Divor Sto	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	F.C. Slana	Vel Chnl	Flow Area	Top Width	Froude # Chl
Reach	River Sta	Profile	(m3/s)	(m)	(m)	(m)	(m)	E.G. Slope (m/m)	(m/s)	(m2)	(m)	Froude # Chi
Reach1	826.0436	2 Year	5.1	308.34	309.71	308.72	309.71	0.000001	0.03	210.2	234.98	0.01
Reach1	826.0436	5 Year	9	308.34	309.83	308.88	309.83	0.000002	0.05	238.4	236.02	0.01
	826.0436	10 Year	12.2	308.34	309.9	309	309.9	0.000002	0.06	255.25	236.65	0.02
	826.0436 826.0436	25 Year 50 Year	19.2 26.7	308.34 308.34	310.02 310.17	309.21 309.46	310.02 310.17	0.000004	0.09 0.11	284.13 319.42	237.74 239.16	0.02
		100 Year	36.5	308.34	310.29	309.46	310.29	0.000008	0.11	349.64	240.48	0.03
Reach1	826.0436	Regional	86.6	308.34	312.06	309.46	312.06	0.000003	0.14	807.05	279.17	0.02
Reach1	786.1621	2 Year	5.1	308.37	309.71	308.6	309.71	0.000001	0.03	216.17	257.6	0.01
Reach1 Reach1	786.1621 786.1621	5 Year 10 Year	9 12.2	308.37 308.37	309.83 309.9	308.7 308.78	309.83 309.9	0.000002	0.05 0.06	247.74 267.22	269.74 276.95	0.01
Reach1	786.1621	25 Year	12.2	308.37	310.02	308.92	310.02	0.000002	0.00	301.66	270.33	0.02
Reach1	786.1621	50 Year	26.7	308.37	310.17	309.09	310.17	0.000005	0.11	344.75	294.2	0.03
Reach1	786.1621	100 Year	36.5	308.37	310.29	309.22	310.29	0.000007	0.13	382.14	299.34	0.03
Reach1	786.1621	Regional	86.6	308.37	312.06	309.57	312.06	0.000002	0.11	997.15	377.84	0.02
Reach1	729.9763	2 Year	5.1	308.12	309.7	308.32	309.71	0.000006	0.11	98.64	237.74	0.03
Reach1	729.9763	5 Year	9	308.12	309.82	308.41	309.83	0.000011	0.15	127.07	238.78	0.04
Reach1		10 Year	12.2	308.12	309.9	308.47	309.9	0.000015	0.18	144.02	239.36	0.04
	729.9763	25 Year	19.2	308.12	310.02	308.6	310.02	0.000024	0.24	173.05	240.41	0.06
Reach1 Reach1	729.9763 729.9763	50 Year 100 Year	26.7 36.5	308.12 308.12	310.16 310.29	308.71 308.86	310.17 310.29	0.000028	0.28 0.32	208.99 240.21	246.04 252.05	0.06 0.07
Reach1	729.9763	Regional	86.6	308.12	310.29	308.86	310.29	0.000036	0.32	726.57	295.98	0.07
Reach1	677.7048	2 Year	5.1	308.03	309.7	308.26	309.71	0.000004	0.09	146.47	272.05	0.02
Reach1	677.7048	5 Year	9	308.03	309.82	308.37	309.82	0.000007	0.12	178.96	272.9	0.03
Reach1 Reach1	677.7048 677.7048	10 Year 25 Year	12.2 19.2	308.03 308.03	309.89 310.02	308.44 308.58	309.9 310.02	0.000009	0.15 0.19	198.32 231.49	273.61 275.49	0.03
Reach1	677.7048	50 Year	26.7	308.03	310.02	308.72	310.16	0.000013	0.13	272.27	277.3	0.04
Reach1	677.7048	100 Year	36.5	308.03	310.29	308.91	310.29	0.000023	0.26	307.08	278.83	0.06
Reach1	677.7048	Regional	86.6	308.03	312.06	309.52	312.06	0.000005	0.19	863.35	343.51	0.03
Dooch1	607.0422	2 Voor	Γ 1	208.04	200.7	200 52	200.7	0.000002	0.07	177 40	267.46	0.02
Reach1 Reach1	607.9432 607.9432	2 Year 5 Year	5.1 9	308.04 308.04	309.7 309.82	308.53 308.72	309.7 309.82	0.000003	0.07 0.1	177.48 209.4	267.46 268.38	0.02 0.03
Reach1	607.9432	10 Year	12.2	308.04	309.89	308.86	309.89	0.000007	0.12	228.41	268.95	0.03
Reach1		25 Year	19.2	308.04	310.02	309.07	310.02	0.000012	0.17	260.89	269.84	0.04
Reach1		50 Year	26.7	308.04	310.16	309.22	310.16	0.000015	0.19	300.75	270.97	0.04
Reach1 Reach1	607.9432 607.9432	100 Year	36.5 86.6	308.04 308.04	310.29 312.06	309.27 309.4	310.29 312.06	0.00002	0.24 0.17	335.75 919.52	284.13 360.4	0.05 0.03
Reaction	007.9452	Regional	0.00	506.04	512.00	509.4	512.00	0.000005	0.17	919.52	500.4	0.05
Reach1	557.6347	2 Year	5.1	307.99	309.7	308.5	309.7	0.000004	0.08	156.66	238.69	0.02
		5 Year	9	307.99	309.82	308.66	309.82	0.000007	0.11	185.13	240.4	0.03
Reach1		10 Year	12.2	307.99	309.89	308.77	309.89	0.000009	0.14	202.12	240.69	0.03
	557.6347 557.6347	25 Year 50 Year	19.2 26.7	307.99 307.99	310.01 310.16	308.99 309.18	310.01 310.16	0.000015	0.18 0.22	231.09 266.86	241.15 245.04	0.04 0.05
	557.6347	100 Year	36.5	307.99	310.29	309.25	310.29	0.000025	0.22	297.57	248.67	0.06
Reach1	557.6347	Regional	86.6	307.99	312.06	309.43	312.06	0.000006	0.19	832.03	328.44	0.03
	500.070	2.1	F 4	200.04	200 7	200.46	200 7	0.000004	0.00	455.40	226.40	0.02
Reach1 Reach1	523.273 523.273	2 Year 5 Year	5.1 9	308.01 308.01	309.7 309.82	308.46 308.62	309.7 309.82	0.000004	0.08	155.19 183.36	236.49 237.53	0.02 0.03
Reach1	523.273	10 Year	12.2	308.01	309.89	308.74	309.89	0.000009	0.12	200.12	238.01	0.03
Reach1	523.273	25 Year	19.2	308.01	310.01	308.97	310.01	0.000015	0.19	228.75	238.81	0.05
Reach1	523.273	50 Year	26.7	308.01	310.16	309.16	310.16	0.000019	0.22	263.93	239.76	0.05
Reach1	523.273 523.273	100 Year Regional	36.5 86.6	308.01 308.01	310.29 312.06	309.32 309.44	310.29 312.06	0.000025	0.27 0.19	293.77 843.4	241.1 336.65	0.06 0.03
Reach1	323.273	Regional	0.00	200.01	312.00	309.44	312.00	0.000005	0.13	043.4	530.05	0.03
Reach1	490.7546	2 Year	5.1	308.37	309.68	308.83	309.7	0.000481	0.64	10.4	102.8	0.23
Reach1	490.7546	5 Year	9	308.37	309.79	309.02	309.82	0.000674	0.83	21.19	103.37	0.27
Reach1	490.7546	10 Year	12.2	308.37	309.86	309.16	309.89	0.000761	0.92	27.79	103.71	0.29
Reach1 Reach1	490.7546 490.7546	25 Year 50 Year	19.2 26.7	308.37 308.37	309.97 310.13	309.79 309.87	310.01 310.16	0.000892	1.07 1.01	39.04 55.5	104.38 106.68	0.32 0.3
Reach1		100 Year	36.5	308.37	310.13	309.94	310.10	0.000739	1.01	68.78	112.24	0.31
Reach1	490.7546	Regional	86.6	308.37	312.06	310.17	312.06	0.000028	0.37	393.78	224.87	0.07
	400 5005											
Reach1	483.5387		Culvert									
Reach1	474.6852	2 Year	5.1	308.34	309.32	308.97	309.39	0.001586	1.16	4.59	13.93	0.41
	474.6852	5 Year	9	308.34	309.6	309.18	309.71	0.001845	1.52	6.23	51.7	0.46
	474.6852	10 Year	12.2	308.34	309.83	309.32	309.84	0.000257	0.62	37.87	99.05	0.18
-	474.6852	25 Year	19.2	308.34	309.98	309.59	310	0.000288	0.71	54.25	106.42	0.19
	474.6852	50 Year 100 Year	26.7 36.5	308.34 308.34	310.14 310.26	309.75 309.74	310.15 310.27	0.000269 0.000315	0.74 0.84	70.63 83.64	106.9 109.71	0.19 0.2
Reach1	4/4 6857	TOO ICAI	86.6	308.34	312.05	310.04	312.05	0.0000313	0.84	397.47	219.32	0.2
	474.6852 474.6852	Regional	00.0				_	1				
		Regional	80.0									
Reach1 Reach1	474.6852 441.3358	2 Year	7.9	308.45	309.32	309	309.34	0.000828	0.76	14.7	32.38	0.29
Reach1 Reach1 Reach1	474.6852 441.3358 441.3358	2 Year 5 Year	7.9 14.6	308.45	309.63	309.14	309.65	0.000629	0.85	26.11	42.16	0.27
Reach1 Reach1 Reach1 Reach1	474.6852 441.3358 441.3358 441.3358	2 Year 5 Year 10 Year	7.9 14.6 21.9	308.45 308.45	309.63 309.79	309.14 309.26	309.65 309.82	0.000629 0.000872	0.85 1.09	26.11 34.21	42.16 62.57	0.27 0.32
Reach1 Reach1 Reach1 Reach1 Reach1	474.6852 441.3358 441.3358	2 Year 5 Year	7.9 14.6	308.45	309.63	309.14	309.65	0.000629	0.85	26.11	42.16	0.27
Reach1 Reach1 Reach1 Reach1 Reach1 Reach1 Reach1	474.6852 441.3358 441.3358 441.3358 441.3358 441.3358 441.3358	2 Year 5 Year 10 Year 25 Year 50 Year 100 Year	7.9 14.6 21.9 30.7 37.5 47.8	308.45 308.45 308.45 308.45 308.45	309.63 309.79 309.93 310.1 310.23	309.14 309.26 309.38 309.46 309.57	309.65 309.82 309.98 310.14 310.26	0.000629 0.000872 0.001093 0.000674 0.000657	0.85 1.09 1.32 1.13 1.17	26.11 34.21 46.73 64.78 77.36	42.16 62.57 100.97	0.27 0.32 0.37 0.29 0.29
Reach1 Reach1 Reach1 Reach1 Reach1 Reach1 Reach1	474.6852 441.3358 441.3358 441.3358 441.3358 441.3358 441.3358	2 Year 5 Year 10 Year 25 Year 50 Year	7.9 14.6 21.9 30.7 37.5	308.45 308.45 308.45 308.45	309.63 309.79 309.93 310.1	309.14 309.26 309.38 309.46	309.65 309.82 309.98 310.14	0.000629 0.000872 0.001093 0.000674	0.85 1.09 1.32 1.13	26.11 34.21 46.73 64.78	42.16 62.57 100.97 102.39	0.27 0.32 0.37 0.29

Deach	Divor Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev		Vel Chnl		Top \A/idth	Froude # Chl
Reach	River Sta	Profile	(m3/s)	(m)	(m)	(m)	E.G. Elev (m)	E.G. Slope (m/m)	(m/s)	Flow Area (m2)	Top Width (m)	Froude # Chi
Reach1	380.4584	2 Year	7.9	308.64	309.29	308.94	309.3	0.000695	0.66	22.11	53.71	0.26
Reach1	380.4584	5 Year	14.6	308.64	309.61	309.05	309.62	0.000345	0.61	49.41	87.94	0.2
Reach1	380.4584	10 Year	21.9	308.64	309.77	309.14	309.78	0.000383	0.71	64.02	96.24	0.21
Reach1	380.4584	25 Year	30.7	308.64	309.91	309.23	309.93	0.000442	0.82	78.21	105.21	0.23
Reach1	380.4584	50 Year	37.5	308.64	310.09	309.32	310.1	0.000339	0.79	97.02	106.14	0.21
Reach1	380.4584	100 Year	47.8	308.64	310.21	309.4	310.23	0.000375	0.87	109.8	106.75	0.22
Reach1	380.4584	Regional	103.2	308.64	312.04	309.7	312.04	0.000068	0.62	334.52	148.98	0.11
Poach1	378.7204	2 Year	7.9	308.02	309.29	308.65	200.2	0.000241	0.53	27.26	56.51	0.16
Reach1 Reach1	378.7204	5 Year	14.6	308.02	309.29	308.65	309.3 309.62	0.000241	0.53	56.12	91.89	0.16 0.15
Reach1	378.7204	10 Year	21.9	308.02	309.77	309.05	309.78	0.000229	0.50	71.39	100.95	0.15
Reach1	378.7204	25 Year	30.7	308.02	309.91	309.17	309.93	0.000274	0.77	86.04	105.66	0.19
Reach1	378.7204	50 Year	37.5	308.02	310.09	309.26	310.1	0.00023	0.76	104.93	106.6	0.18
Reach1	378.7204	100 Year	47.8	308.02	310.21	309.36	310.23	0.000265	0.85	117.73	107.22	0.19
Reach1	378.7204	Regional	103.2	308.02	312.04	309.71	312.04	0.000059	0.62	344.89	150.43	0.1
Reach1	294.9459	2 Year	7.9	308.05	309.26	308.58	309.27	0.000287	0.51	29.01	58.74	0.18
Reach1	294.9459	5 Year	14.6	308.05	309.6	308.8	309.61	0.000116	0.4	100.57	130.69	0.12
Reach1	294.9459 294.9459	10 Year 25 Year	21.9 30.7	308.05 308.05	309.76 309.9	308.95 309.1	309.77 309.91	0.000156	0.51 0.62	127.06 148.37	154.86 156.05	0.14 0.16
Reach1 Reach1	294.9459	25 Year 50 Year	30.7 37.5	308.05	309.9 310.08	309.1	309.91	0.000202	0.62	148.37	156.05	0.16
Reach1	294.9459	100 Year	47.8	308.05	310.08	309.21	310.08	0.000183	0.04	194.93	157.0	0.10
Reach1	294.9459	Regional	103.2	308.05	312.03	309.41	312.04	0.000068	0.64	510.97	199.16	0.10
Reach1	291.1832	2 Year	7.9	307.84	309.26	308.49	309.27	0.000229	0.55	29.91	61.41	0.16
Reach1	291.1832	5 Year	14.6	307.84	309.6	308.73	309.61	0.000111	0.45	106.42	155.26	0.12
Reach1	291.1832	10 Year	21.9	307.84	309.76	308.91	309.76	0.00015	0.56	130.59	156.62	0.14
Reach1	291.1832	25 Year	30.7	307.84	309.89	309.09	309.9	0.000197	0.68	152.07	157.82	0.16
Reach1	291.1832	50 Year	37.5	307.84	310.07	309.21	310.08	0.000184	0.7	180.57	159.4	0.16
Reach1 Reach1	291.1832 291.1832	100 Year Regional	47.8 103.2	307.84 307.84	310.19 312.03	309.3 309.49	310.2 312.04	0.000228	0.81 0.7	199.15 517.95	160.42 199.37	0.18 0.11
Neachi	291.1052	Regional	105.2	307.04	512.05	309.49	512.04	0.000072	0.7	517.55	199.37	0.11
Reach1	211.9683	2 Year	7.9	307.86	309.25	308.36	309.26	0.0001	0.4	64.84	184.41	0.11
Reach1	211.9683	5 Year	14.6	307.86	309.6	308.57	309.6	0.000069	0.39	129.52	193.22	0.1
Reach1	211.9683	10 Year	21.9	307.86	309.75	308.75	309.75	0.00009	0.47	159.51	197.17	0.11
Reach1	211.9683	25 Year	30.7	307.86	309.89	308.98	309.89	0.000115	0.55	186.36	200.64	0.13
Reach1	211.9683	50 Year	37.5	307.86	310.07	309.1	310.07	0.000103	0.56	223.07	205	0.12
Reach1	211.9683	100 Year	47.8	307.86	310.18	309.27	310.19	0.000126	0.64	246.77	207.44	0.14
Reach1	211.9683	Regional	103.2	307.86	312.03	309.52	312.03	0.000034	0.49	686.98	297.33	0.08
Reach1	156.9333	2 Year	7.9	307.62	309.25	308.13	309.26	0.000026	0.23	128.77	166.69	0.06
Reach1	156.9333	5 Year	14.6	307.62	309.23	308.38	309.20	0.000020	0.23	128.77	180.31	0.00
Reach1	156.9333	10 Year	21.9	307.62	309.75	308.51	309.75	0.000048	0.25	216.07	182.8	0.08
Reach1	156.9333	25 Year	30.7	307.62	309.88	308.67	309.89	0.000069	0.47	240.68	184.99	0.1
Reach1	156.9333	50 Year	37.5	307.62	310.06	308.75	310.07	0.00007	0.5	274.33	187.15	0.1
Reach1	156.9333	100 Year	47.8	307.62	310.18	308.86	310.18	0.000092	0.58	295.65	187.59	0.12
Reach1	156.9333	Regional	103.2	307.62	312.03	309.13	312.03	0.000035	0.52	708.59	228.29	0.08
	407			0.07	0.5.5 -		0.00	0.007-		4		
Reach1	107.5073	2 Year	10.5	307.38	309.25	308	309.25	0.000027	0.26	155.55	147.39	0.06
Reach1 Reach1	107.5073 107.5073	5 Year 10 Year	17.7 25.1	307.38 307.38	309.59 309.75	308.14 308.26	309.6 309.75	0.000033	0.32 0.4	205.82 228.25	147.66 147.78	0.07 0.08
Reach1 Reach1	107.5073	25 Year	33.9	307.38	309.75	308.26	309.75	0.000048	0.4	228.25	147.78	0.08
Reach1	107.5073	50 Year	40.6	307.38	310.06	308.55	310.06	0.000071	0.53	274.58	148.03	0.1
Reach1	107.5073	100 Year	50.2	307.38	310.17	308.59	310.18	0.00009	0.61	291.27	148.12	0.12
Reach1	107.5073	Regional	103.3	307.38	312.03	308.93	312.03	0.00004	0.58	640.52	191.85	0.09
Reach1	64.59046	2 Year	10.5	307.47	309.25	308.11	309.25	0.000035	0.28	143.97	133.98	0.07
Reach1	64.59046	5 Year	17.7	307.47	309.59	308.21	309.59	0.000042	0.34	189.62	134.18	0.08
Reach1 Reach1	64.59046 64.59046	10 Year 25 Year	25.1 33.9	307.47 307.47	309.74 309.87	308.32 308.42	309.75 309.88	0.000061 0.000086	0.43 0.54	209.89 227.58	134.26 134.34	0.09
Reach1 Reach1	64.59046 64.59046	50 Year	40.6	307.47	309.87	308.42	309.88	0.000086	0.54	227.58	134.34	0.11
Reach1	64.59046	100 Year	50.2	307.47	310.00	308.55	310.00	0.000114	0.57	266.83	134.44	0.12
Reach1	64.59046	Regional	103.3	307.47	312.02	308.9	312.03	0.00005	0.64	567.14	154.83	0.1
Reach1	0	2 Year	10.5	307.35	309.25	307.91	309.25	0.000018	0.21	146.79	114.67	0.05
Reach1	0	5 Year	17.7	307.35	309.59	308.03	309.59	0.000025	0.28	185.88	115.32	0.06
Reach1	0	10 Year	25.1	307.35	309.74	308.14	309.74	0.000038	0.36	203.19	115.61	0.08
Reach1	0	25 Year	33.9	307.35	309.87	308.24	309.87	0.000056	0.45	218.25	115.86	0.09
Reach1	0	50 Year	40.6	307.35	310.05	308.3	310.05	0.00006	0.49	239.12	116.34	0.1
Reach1	0	100 Year Regional	50.2 103 3	307.35	310.16	308.39	310.17	0.000078	0.58	251.95 526.41	116.85	0.11
Reach1	0	Regional	103.3	307.35	312.02	308.72	312.03	0.00004	0.58	526.41	135.98	0.09

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev		E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
Reach1	1486.058	2 Voar	(m3/s) 3.5	(m) 316.96	(m) 317.7	(m) 317.7	(m) 317.8	(m/m) 0.006044	(m/s) 1.48	(m2) 4.83	(m) 34.7	0.0
Reach1	1486.058		5.3	316.96	317.78				1.48			0.
Reach1	1486.058		8.3		317.96			0.003371	1.47	14.86		0.
Reach1	1486.058	25 Year	15.5	316.96	318.44	318	318.46	0.000875	1.05	41.69	61.25	C
leach1	1486.058		22.8	316.96	318.82	318.14		0.000501	0.95	66.84		
each1	1486.058		32.6			318.24			0.88			
leach1	1486.058	Regional	80.7	316.96	321.12	318.61	321.13	0.000122	0.85	275.66	112.69	0.
each1	1477.037	2 Year	3.5	316.47	317.47	317.28	317.54	0.002671	1.35	4.12	10.23	0.4
each1	1477.037		5.3	316.47	317.61	317.20	317.71	0.002926	1.55	5.45		0.
each1	1477.037		8.3	316.47	317.9	317.57	317.99	0.002299	1.68			0.
each1	1477.037	25 Year	15.5	316.47	318.29	317.85	318.43	0.002587	2.15	12.17	12.86	0.
each1	1477.037		22.8		318.62	318.08		0.002716		15.68		0.
each1	1477.037		32.6		319.04					20.89		0.
each1	1477.037	Regional	80.7	316.47	321.06	319.51	321.12	0.000604	2.04	175.47	204.71	0.
leach1	1463.072		Bridge									
each1	1452.487	2 Year	3.5	316.44	317.1	317.1	317.34	0.013131	2.15	1.62	3.42	
leach1	1452.487		5.3		317.34			0.006351	1.93			
each1	1452.487	10 Year	8.3	316.44	317.47	317.47	317.67	0.00668	2.23	6.02	23.13	0.
each1	1452.487		15.5		317.69	317.69	317.97	0.007963	2.83	9.19		0.
each1	1452.487		22.8		317.86			0.00858	3.26			0.
each1	1452.487		32.6		318.07	318.07	318.51	0.008992	3.7	14.79		0.
each1	1452.487	regional	80.7	316.44	318.81	318.81	319.6	0.009984	5.15	25.75	23.13	1.
leach1	1429.623	2 Year	3.5	315.16	316.43		316.47	0.00082	0.92	4.23		
leach1	1429.623	5 Year	5.3	315.16	316.37		316.48		1.48			
Reach1	1429.623		8.3	315.16	316.34	316.19		0.006266	2.41	3.56		
each1	1429.623		15.5	315.16	316.79	316.79	317.09	0.004439	2.61	9.4		
each1	1429.623		22.8				317.33		2.91	13.65		0.
each1 each1	1429.623 1429.623		32.6 80.7	315.16 315.16		317.21 317.83	317.57 318.34		3.25 4.34	18.69 37.79		0
Cacili	1425.025	Regional	00.7	515.10	517.05	517.05	510.54	0.003337	4.54	57.75	54.05	0.
Reach1	1428.749	2 Year	3.5	315.16	316.44		316.46	0.000423	0.67	8.22	14.52	(
Reach1	1428.749	5 Year	5.3	315.16	316.42		316.46	0.001071	1.05	7.88	14.28	0.
each1	1428.749		8.3				316.57					
each1	1428.749		15.5				316.81	0.004419	2.37			
each1	1428.749		22.8						3.18			
each1 each1	1428.749 1428.749		32.6 80.7	315.16 315.16			317.32 318.15		3.46 4.46			
eachi	1420.749	Regional	80.7	515.10	517.05	517.05	510.15	0.007043	4.40	55.45	52.62	0.
leach1	1398.044	2 Year	3.5	315.5	316.16	316.16	316.4	0.013116	2.15	1.63	3.42	
Reach1	1398.044		5.3		316.32	316.32	316.39	0.004308	1.48	8.29	50.45	(
Reach1	1398.044	10 Year	8.3	315.5	316.38	316.38	316.46	0.005319	1.74	11.17	51.4	0.
Reach1	1398.044		15.5		316.47		316.59		2.23	15.93		
Reach1	1398.044		22.8		316.54				2.57	19.78		
Reach1	1398.044 1398.044		32.6 80.7	315.5 315.5	316.62	316.62	316.8		2.94 4.01	24.13		
Reach1	1398.044	Regional	80.7	315.5	316.92	316.92	317.21	0.01307	4.01	41.09	60.29	1.
Reach1	1356.024	2 Year	3.7	314.8	315.48	315.48	315.72	0.013187	2.19	1.69	3.46	
Reach1	1356.024		6.1	314.8					0.3	33.03		
Reach1	1356.024	10 Year	8.5	314.8	315.63	315.63	315.63	0.000351	0.42	33.03	99.88	0.
Reach1	1356.024		15.5	314.8	315.63					33.03		
Reach1	1356.024		22.8						1.14	33.03		
Reach1	1356.024		32.4						1.62			
Reach1	1356.024	Regional	81.1	314.8	315.85	315.73	315.96	0.008553	2.55	59.46	125.29	0.
Reach1	1311.56	2 Year	3.7	313.5	314.27	314.18	314.44	0.007648	1.85	2.01	3.8	0.
Reach1	1311.56		6.1	313.5	314.47				2.22	2.88		0.
Reach1	1311.56	10 Year	8.5						2.71	3.38		
each1	1311.56	25 Year	15.5					0.000131	0.52	75.79	108.68	0
each1	1311.56		22.8						2.16			
each1		100 Year	32.4						2.47	37.64		
each1	1311.56	Regional	81.1	313.5	315.37	315.37	315.58	0.006622	3.53	61.19	105.37	0
each1	1310.373	2 Year	3.7	313.5	314.18	314.18	314.42	0.013069	2.19	1.69	3.46	
each1	1310.373		6.1	313.5	314.39				2.5	2.54		
each1	1310.373		8.5									
leach1	1310.373		15.5			314.81	315.45					
each1	1310.373		22.8			315.04			2.09			
each1	1310.373		32.4	313.5 212 E	315.11	315.11	315.22		2.4 3.45	40.5		
each1	1310.373	иевіоцяј	81.1	313.5	315.31	315.31	315.5	0.006631	3.45	64.2	115.28	0
each1	1281.832	2 Year	3.7	313.34	314.29	314.02	314.29	0.000039	0.16	42.21	80.47	0
each1	1281.832		6.1	313.34	314.1		314.1		0.39			
each1	1281.832		8.5									
each1	1281.832		15.5									
each1	1281.832		22.8			314.1	314.14					
each1	1281.832		32.4				314.18					
each1	1281.832	Regional	81.1	313.34	314.55	314.26	314.64	0.005359	2.27	65.41	93.58	0
each1	1280.724	2 Year	3.7	313.34	314.02	314.02	314.26	0.012874	2.18	1.7	3.46	0
each1	1280.724		6.1	313.34					0.39			
each1	1280.724		8.5						0.55			
each1	1280.724		15.5					0.002395	1	27.27		
each1	1280.724		22.8						1.47			
each1	1280.724		32.4						2.1			0
		Regional	81.1	313.34	314.55	314.25	314.63	0.004731	2.14	70.5	101.69	0

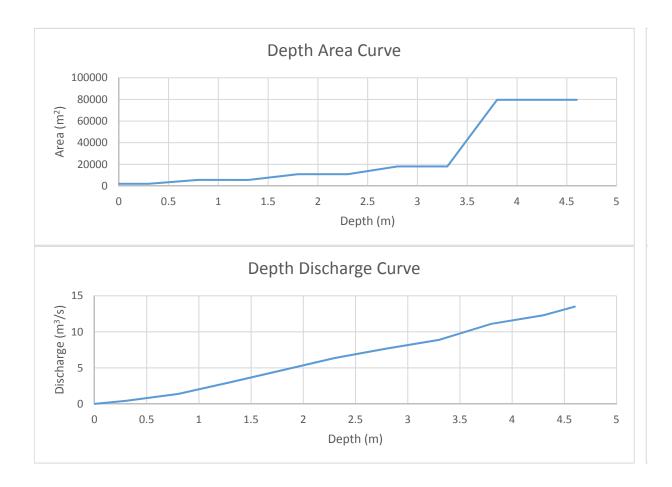
Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
Daash (1245.002	2. V = = =	(m3/s)	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)	0.14
Reach1 Reach1	1245.863 1245.863		3.7 6.1	312.63 312.63	313.58 313.33	313.31 313.33	313.58 313.35			20.3 11.84		0.11
Reach1	1245.863		8.5	312.63	313.33	313.33	313.35	0.001045	1.16			0.52
Reach1	1245.863		15.5	312.63	313.43	313.33	313.5		1.7	15.12	33.96	0.69
Reach1	1245.863 1245.863		22.8	312.63	313.62	313.36	313.69		1.78			0.64
Reach1 Reach1	1245.863		32.4 81.1	312.63 312.63	313.81 314.38	313.48 313.93	313.88 314.49	0.00399	1.92 2.39	30.33 67.79		0.62
	12101000		0111	012100	01100	010.00	01110	01000002	2.00	0,113	, 0.00	0.01
Reach1	1244.83		3.7	312.63	313.31	313.31	313.55					1
Reach1 Reach1	1244.83 1244.83		6.1 8.5	312.63 312.63	313.33 313.33	313.33 313.33	313.35 313.36	0.001756	0.82	12.04 12.04	29.23 29.23	0.37
Reach1	1244.83		15.5	312.63	313.43	313.33	313.50		1.14	12.04		0.69
Reach1	1244.83		22.8	312.63	313.62	313.34	313.69					0.63
Reach1		100 Year	32.4	312.63	313.8	313.47	313.88		1.89		50.08	0.61
Reach1	1244.83	Regional	81.1	312.63	314.4	313.93	314.47	0.002424	2.05	77.96	79.97	0.52
Reach1	1176.299	2 Year	3.7	311.5	312.78	312.18	312.8	0.000549	0.76	8	17.75	0.23
Reach1	1176.299		6.1	311.5	312.53	312.43	312.7	0.004866	1.9	4.32	11.82	0.66
Reach1	1176.299		8.5	311.5	312.6		312.85			5.23		0.78
Reach1 Reach1	1176.299 1176.299		15.5 22.8	311.5 311.5	312.89 313.08	312.88 313.07	313.16 313.39		2.69	10.05 14.41	20.31 24.93	0.79
Reach1	1176.299		32.4	311.5	313.08	313.07	313.61	0.005856		20.1	24.93	0.82
Reach1	1176.299	Regional	81.1	311.5	313.88	313.88	314.25	0.006085	4.04	46.98	51.52	0.87
Reach1 Reach1	1175.274 1175.274		3.7 6.1	311.5 311.5		312.18 312.43	312.8 312.69			8.1 4.32		0.23
Reach1 Reach1	1175.274		8.5	311.5	312.52	312.43	312.69	0.004939	2.36			0.67
Reach1	1175.274		15.5	311.5	312.88	312.88	313.16	0.006114	2.69	10.09	20.45	0.79
Reach1	1175.274		22.8	311.5	313.08		313.38		2.99			0.81
Reach1 Beach1	1175.274 1175.274		32.4 81.1	311.5 311.5	313.28	313.15	313.37	0.002301	2.01 2.69	35.42	44.79	0.51
Reach1	1175.274	regional	81.1	311.5	313.87	313.41	314.01	0.002721	2.69	64.03	52	0.58
Reach1	1137.794	2 Year	3.7	311.82	312.5	312.5	312.74	0.012972	2.18	1.7	3.46	0.99
Reach1	1137.794		6.1	311.82	312.52	312.52	312.55	0.003547	1.16		37.84	0.52
Reach1	1137.794		8.5	311.82	312.54	312.52	312.59			11.84		0.65
Reach1 Reach1	1137.794 1137.794		15.5 22.8	311.82 311.82	312.78 313.11	312.56 312.65	312.82 313.14	0.003004	1.41 1.21	21.27 35.38	41.29 45.59	0.51
Reach1	1137.794		32.4			312.03						0.37
Reach1	1137.794	Regional	81.1	311.82	313.85	313.11	313.93	0.002215				0.51
		a .v/										
Reach1 Reach1	1109.979 1109.979		3.7 6.1	311.42 311.42	312.14 312.37	312.06 312.16	312.19 312.4	0.003888		5.57 11.09		0.55
Reach1	1109.979		8.5	311.42	312.41	312.22	312.46		1.03		25.32	0.46
Reach1	1109.979	25 Year	15.5	311.42	312.66	312.36	312.72		1.55	18.77		0.48
Reach1	1109.979		22.8		313.04	312.48	313.08					0.38
Reach1 Reach1	1109.979 1109.979		32.4 81.1	311.42 311.42	313.17 313.61	312.62 313.13	313.24 313.81	0.001849	1.78 3.08			0.45
Reactif	1105.575	Regional	01.1	511.42	515.01	515.15	515.01	0.003374	5.00	51.40	40.05	0.05
Reach1	1108.705	2 Year	3.7	311.42	312.14	311.84	312.18	0.003212	1.13	5.53	16.66	0.5
Reach1	1108.705		6.1	311.42	312.36		312.39		1.15			0.43
Reach1 Reach1	1108.705 1108.705		8.5 15.5	311.42 311.42	312.39 312.65		312.45 312.71	0.003153	1.46 1.65			0.53
Reach1	1108.705		22.8	311.42	313.03	312.4	312.71		1.05			0.32
Reach1	1108.705		32.4	311.42	313.16		313.24	0.002005		34.08		0.47
Reach1	1108.705	Regional	81.1	311.42	313.59	313.17	313.8	0.004341	3.19	50.33	40.78	0.72
Reach1	1088.885	2 Voor	3.7	311.12	311.8	311.8	312.04	0.012883	2.18	1.7	3.46	0.99
Reach1	1088.885		6.1	311.12	312.1	312.1	312.04	0.0012883	2.18	3.88		0.76
Reach1	1088.885		8.5	311.12	312.28	312.2	312.38			9.32		0.56
Reach1	1088.885		15.5	311.12	312.49	312.39	312.64	0.004157				0.65
Reach1 Reach1	1088.885 1088.885		22.8 32.4	311.12 311.12	313 313.13	312.57 312.79	313.05 313.2	0.001136	1.47 1.76	35.58 41.78		0.36
Reach1 Reach1	1088.885		32.4	311.12	313.13		313.2	0.001481				0.42
Reach1	1033.914		3.7	310.62	311.42	311.3	311.58					0.72
Reach1	1033.914 1033.914		6.1 8.5	310.62 310.62	311.49 311.66		311.83 312.08				3.63 3.76	1
Reach1 Reach1	1033.914		8.5	310.62	311.66		312.08			3.01		0.99
Reach1	1033.914		22.8		312.98		313.02	0.000425				0.23
Reach1	1033.914		32.4	310.62	313.09		313.15					0.28
Reach1	1033.914	Regional	81.1	310.62	313.48	312.88	313.61	0.001474	2.27	59.09	67.71	0.44
Reach1	1033.308	2 Year	3.7	310.62	311.51	311.1	311.53	0.000801	0.69	6	13.11	0.26
Reach1	1033.308		6.1	310.62	311.7	311.24	311.55	0.000803	0.05			0.20
Reach1	1033.308		8.5	310.62	311.85		311.88			11	17.13	0.28
Reach1	1033.308		15.5	310.62	312.5		312.52	0.000264		24.51	22.24	0.17
Reach1 Reach1	1033.308 1033.308		22.8 32.4		312.99 313.11		313.01 313.14	0.000212	0.75			0.16
Reach1	1033.308		81.1									
Reach1	1010.387		3.7	310.42 310.42	311.5		311.52					0.21
Reach1 Reach1	1010.387 1010.387		6.1 8.5			311.06 311.19						0.25
Reach1	1010.387		15.5	310.42	312.48		312.51	0.00032				0.27
Reach1	1010.387	50 Year	22.8	310.42	312.98		313	0.00022	0.86	45.14		0.18
Reach1	1010.387		32.4		313.1		313.13					0.22
Reach1	1010.387	кедіопаі	81.1	310.42	313.49	312.71	313.57	0.000704	1.75	83.53	88.96	0.33
Reach1	998.545	2 Year	3.7	310.34	311.5	310.69	311.51	0.000212	0.52	7.05	9.32	0.16
Reach1	998.545	5 Year	6.1	310.34	311.67	310.83	311.7	0.000363	0.75	8.1	9.63	0.21
Reach1	998.545		8.5	310.34	311.8		311.85					0.25
Reach1	998.545 998.545		15.5 22.8	310.34 310.34		311.22	312.5 313			12.82 36.66		0.27
Reach1 Reach1		50 Year 100 Year	32.4			311.47 311.77	313					0.18
				310.34			313.56					0.2
Reach1	998.545	Regional	81.1	510.54	515.40	312.97	515.50	0.000554	1.02	04.52	55.05	0.5

LetL	ach I	River Sta	Profile	Q Total (m3/s)	Min Ch El (m)	W.S. Elev (m)	Crit W.S. (m)	E.G. Elev (m)	E.G. Slope (m/m)	Vel Chnl (m/s)	Flow Area (m2)	Top Width (m)	Froude # Chl
encl. 80:-Jab From 6.1 June June <thjune< th=""> June June <</thjune<>	ach1	993.3976				-					-		
Nerth 987 234 () Yew 8.5 Dick Disk Disk <thdisk< th=""> Disk Disk</thdisk<>	ach1	987.5314	2 Year	3.7	310.49	311.47	310.85	311.49	0.00039	0.63	5.88	9.95	0.21
Bacht 997:516 Store 13.6 31.30 0.2003 2.31 7.30 11.30 Bacht 997:516 Store 1.55 1016 71.55 0.0025 3.55 77 10.5 Bacht 997:516 Store 1.55 1016 71.55 0.0025 3.55 77 10.5 Bacht 997:516 Store 1.55 10167 11.55 11.56 11.56 0.0255 3.55 77 1.55 Bacht 997:516 Store 1.55 10167 11.12 11.12 10.12 0.0257 1.55 1.25 Bacht 997:516 Store 3.55 10.67 11.91 11.12 11.22 1.25 1.25 1.26 <td></td> <td>0.28</td>													0.28
Sont. Pri call of Year 22.6 Entor Pri call <													0.36 0.63
Name Ber 53.58 (Seguent) Ber		987.5314	50 Year	22.8		311.65	311.63		0.008258	3.26	7		0.98
Inst. Inst. <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.65</td></th<>													0.65
sep:1 90.2.15 Your 9 91.00 2.21 4.07 2.22 7.0 7.0 sep:1 802.05 2.5 30.00 31.0 31.00 31.00 31.00 31.00 31.00 31.00 31.00 30.00 32.0 30.00 32.0 30.00 32.0 30.00 32.0 30.00 32.0 30.00 32.0 30.00 <t< td=""><td></td><td>567.5514</td><td>Regional</td><td>01.1</td><td>510.45</td><td>512.01</td><td>512.01</td><td>515.14</td><td>0.002525</td><td>5.01</td><td>55.77</td><td>54.0</td><td>0.05</td></t<>		567.5514	Regional	01.1	510.45	512.01	512.01	515.14	0.002525	5.01	55.77	54.0	0.05
sect. 982.45.10 (***) 11.2 2007 71.15.4 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.78</td></t<>													0.78
Sect. 982.51 255.07 11.68 71.18 <								-					0.85 0.89
Bench1 Boz.6.1 Boz.6.1 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.85</td></th<>													0.85
Bosch BBL 5 BBL 5 BL 22 BL 23 BL 24 BL 24 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.97</td></th<>													0.97
Sec. Start				-				-					1.4
Perch 947,2000 Norm Norm </td <td></td> <td>962.015</td> <td>Regional</td> <td>80.0</td> <td>510.87</td> <td>512.25</td> <td>512.25</td> <td>512.99</td> <td>0.010785</td> <td>5.11</td> <td>23.71</td> <td>50.65</td> <td>1.4</td>		962.015	Regional	80.0	510.87	512.25	512.25	512.99	0.010785	5.11	23.71	50.65	1.4
Bench 947 0000 Diver 122 2012 310.71 502.31 310.72 500.71								-					0.44
Sech1 977.2003/2 Syster 197.2 30.01 30.004 0.00333 1.06 10.1 32.71 Sech1 977.2003/2 Syster 23.01.1 30.02 10.102 31.00 0.00333 1.06 30.01 Sech1 947.2003/100 Feas 23.01.1 30.02 10.102 31.00 0.01486 2.84 1.04 31.04 Sech1 947.2003/100 Feas 23.0 30.03 10.011 30.02 0.00333 1.06 30.04 0.01535 1.68 3.04 0.01535 1.68 3.04 0.01535 1.68 3.04 0.01535 1.68 3.04 1.026 1.000 0.000 0.00 3.0457 2.34.19 Sech1 94.451.00 Year 23.0 3.00.30 1.00.01 3.00.00 0.00000 0.00 3.04.25 7.04.39 3.04.2 3.00.60 0.00000 0.00 3.04.27 3.04.3 3.01.0 3.00.00 0.00000 0.00 3.04.27 3.04.3 3.01.0 3.00.00 0.000000 0.00													0.55 0.51
Seyh: 97.002 10.7 30.2 30.12 30.2 30.02 31.0 00.002 0.12 00.002 0.12 00.002 0.12 00.002 0.12 00.002 0.12 00.002 0.12 00.002 0.12 0.16 31.0 00.002 0.12 0.16 31.0 00.002 0.12 0.16 31.0 00.002 0.16 0.13 0.14													0.45
Nexch. 977.000 epsile 89.6 100.12 312.05 200.22 312.05 200.22 0.12 61.23 27.99 Backhi 94.452 Year 5.1 392.05 310.45 10.14 310.52 0.001231 0.065 7.75 14.46 Kenchi 94.452 Year 92.053 310.35 310.53 310.53 0.015 30.04 2.21 14.65 Kenchi 94.452 Year 32.05 310.03 310.05 0.0000 0.01 2.02 2.13.05 Kenchi 94.452 Segenti 86.6 320.38 310.01 310.04 0.00000 0.01 2.02 2.21 2.24 <					1			-					1.1
Basech Sil 44 1 Your S. 30.6 31.0.2 0.00121 0.65 7.75 14.34 Reach 91.443 Year 0 300.85 310.25 310.45 0.00123 0.05 54 12.05 Reach 91.441 14.442 14.442 14.441 14.4421 14.441 14.4421 14.441								-					1.09 0.03
Bacht 94.451 Vew 12.2 308.81 310.28 310.24 310.25 310.52 1.69 4.7 1.205 Bacht 194.451 19 Vew 12.2 308.83 310.53 310.68 0.01557 1.69 5.54 12.25 Bacht 194.451 10 Vew 2.6 308.83 310.63 310.63 30.06 0.00000 0.05 340.57 23.43 Bacht 194.451 10 Vew 5.5 300.83 310.63 310.63 0.000000 0.01 67.44 2.66.54 Bacht 94.78398 Vew 5.5 32.3 210.04 110.13 10.01 0.000001 0.00 29.12 24.21 Bacht 847.8288 Vew 5.5 32.33 310.1 310.1 310.1 0.00000 0.06 335.31 24.21 Bacht 847.8288 [Vew 2.5 32.3 310.2 310.1 310.1 310.1 310.1 310.1 310.1 31					510.12	512.05	510.92	. 512.05	0.000007	0.12	010.33	239.30	0.05
Sech1 94.45 Dyrer 122 300.83 310.83 310.84 0.03337 1.98 5.84 12.26 Sech1 94.45 Dyrer 25.7 200.83 310.63 310.53 310.83 0.000000 0.06 340.57 224.39 Sech1 94.451 Morer 25.6 200.83 310.63 310.63 310.63 0.000000 0.01 687.27 224.39 Sech1 94.451 Morer 5.0 30.03 310.63 0.000000 0.01 687.27 24.33 Sech1 94.452 Morer 5.0 30.03 310.61 10.10 0.00000 0.01 297.33 242.11 Sech1 97.200 New 9.2 30.3 310.1 310.11 0.00000 0.01 297.33 242.11 Sech1 97.250 New 5.2 30.3 310.1 310.11 0.000000 0.01 297.25 282.72 282.73 Sech1 97.20 New													0.31
Bach 914.65 25 309.80 310.07 310.08 0.01422 2.77 B.82 14.46 bench 914.65 50 vor 30.5 30.68 310.68 310.68 0.00004 0.05 340.57 224.49 bench 914.65 50 vor 36.5 310.68 310.68 0.00005 0.01 697.72 24.58 teach1 914.65 100 vor 30.7 20.00005 0.01 697.22 20.27 21.31 teach1 914.05 100.01 310.01 100.01 0.00000 0.00 291.25 32.11 teach1 977.289 2 vor 1.2 30.01 310.1 310.1 0.00000 0.06 30.31 22.1 teach1 978.288 600.02 30.01 310.1 310.1 310.24 0.00000 0.06 30.31 22.1 teach1 98.162 100.7 1.2 0.000 0.00000 0.00 0.00000 0.00 22.2													1.04 1.07
Beach1 914.451 \$07 309.83 310.63 310.63 0.00039 0.0003 30.77 234.84 Beach1 914.631 Begonal 86.6 309.83 310.64 310.63 310.64 30.000000 0.000000 201.84 222.11 Beach1 BV7.8286 Diver 25.5 300.33 310.71 310.14 310.71 30.000000 0.018 393.71 242.81 Beach1 BV7.8286 Diver 51.5 300.65 300.72 30.028 0.000007 0.018 393.77 22.80 280.85 20.000007 0.018 30.877 30.028 0.000007													1.07
Bench 914.451 Pergon 86.6 392.65 310.63 312.25 0.000000 0.11 677.42 266.58 Seach1 877.8288 Yaw 5.1 309.3 310.0 310.1 310.1 300.1 300.1 310.1 300.2 0.000009 0.0 309.31 242.1 Steah1 877.828 Bogon1 68.6 309.3 300.1 300.2 0.000009 0.0 309.31 242.1 24.8 Steah1 876.120 D'com 12.2 309.4 300.5 0.000009 0.0 297.4 22.8 27.7 24.8 Steah1 786.161 D'com 12.2 308.5 <t< td=""><td>ach1</td><td>914.451</td><td>50 Year</td><td>26.7</td><td>309.83</td><td>310.63</td><td>310.63</td><td>310.63</td><td>0.000004</td><td>0.05</td><td>340.57</td><td>234.39</td><td>0.02</td></t<>	ach1	914.451	50 Year	26.7	309.83	310.63	310.63	310.63	0.000004	0.05	340.57	234.39	0.02
em.ht 97.2892 Year 9 100.04 310.04 310.10 20.002279 2.27 2.47 4.48 Sench.1 847.8288 Even 9 300.3 310.1 310.1 0.00002 0.03 201.2 242.31 Sench.1 847.8288 Even 19.2 300.3 310.1 310.1 0.00000 0.00 201.24 242.31 Sench.1 847.8288 Even 19.2 300.3 310.1 310.1 0.00000 0.00000 0.00 309.35 242.31 Sench.1 847.8288 Even 5.5 309.3 310.2 310.3 0.000000 0.00 39.35 242.71 Sench.1 786.1621 Even 5.1 308.9 309.55 309.29 309.55 0.000007 0.06 19.57 22.86 Sench.1 786.1621 Even 5.1 308.7 308.75 310.01 0.000007 0.06 205.2 23.98 Sench.1 786.121								-					0.03
847.828 § Year 9 300.3 310.1 310.1 0.00001 0.02 221.4 242.11 Sex.h1 847.8288 [2 Year 19.2 309.3 310.1 310.1 0.000000 0.04 291.2 242.11 Sex.h1 847.8288 [2 Year 19.2 309.3 310.3 310.1 0.000000 0.068 300.3 242.31 Sex.h1 847.8288 [2 Year 36.6 309.3 310.3 310.1 310.3 0.000000 0.08 30.3 242.71 Sex.h1 786.162.1 Year 6.6 309.3 310.0 300.71 0.000003 0.04 19.3 27.9 28.8 Sex.h1 786.162.1 Year 0 308.3 300.3 300.71 0.00000 0.06 27.27 29.06 Sex.h1 786.162.1 Year 0.2 308.3 310.3 300.71 0.00000 0.06 27.61 29.86 Sex.h1 786.162.13 Year 0.3 300.75 310.3	acii1	914.451	vegional	86.6	309.83	312.05	310.63	312.05	0.000005	0.11	42.780	200.58	0.03
Beyrkling Beyrkling <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td></t<>													1
warch. 947.8298 25 ver 19.2 300.3 310.1 310.1 0.00004 0.04 29.125 242.11 warch. 947.8298 followar 36.5 300.3 310.1 310.3 0.000000 0.08 330.31 242.31 warch. 947.8298 followar 36.6 309.3 310.1 310.3 0.000003 0.08 39.31 242.31 warch. 976.1521 2 ver 9 308.6 300.71 0.00003 0.04 977.7 28.08 warch. 786.1521 2 ver 9 308.8 310.03 300.57 310.03 0.000003 0.08 330.68 240.7 warch. 786.1521 forwar 36.6 308.9 310.3 300.57 310.33 0.000000 0.08 330.68 240.7 warch. 785.107 Regional 36.6 308.7 310.3 0.000000 0.03 66.33 237.75 warch. 729.9763 Ver <				-									0.01
Berth 847.8285 Solver 26.7 300.3 310.17 310.17 0.000005 0.05 300.19 242.35 teach 847.8298 hegonal 86.6 309.3 310.2 0.000007 0.08 339.31 242.71 teach 786.1521 Year 5.1 308.8 300.72 0.00003 0.04 198.42 237.99 teach 786.1521 Year 9 308.9 309.88 0.00003 0.05 237.22 239.64 teach 786.1521 Yorar 32.3 308.71 0.000007 0.06 727.28 239.89 teach 786.1521 Yorar 36.5 308.9 310.17 308.75 310.31 0.00007 0.08 337.75 teach 785.1621 Negrand 86.6 308.9 310.03 309.71 0.00015 0.13 336.08 241.43 teach 729.9763 Year 5.0 308.75 300.71 300.025 0.00025 <t< td=""><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.01</td></t<>					1								0.01
Berth Berth Berth Status Status <td></td> <td>0.02</td>													0.02
role role <throle< th=""> role role</throle<>													0.03
Paech1 786.1621 EVear 9 306.91 300.71 300.30 300.71 0.00003 0.04 105.46 227.90 Sexh1 786.1021 EVear 12.2 300.80 300.80 300.80 0.00003 0.05 27.21 238.90 Sexh1 786.1021 EVear 12.2 300.89 310.17 0.000007 0.08 306.31 241.43 Sexh1 786.1621 Biolonal 886.6 308.59 310.3 309.57 310.3 0.000007 0.08 306.31 241.43 Sexh1 728.0783 Picar 51 208.75 309.57 310.05 0.00005 0.35 66.81 10.35 223.27 Sexh1 723.9783 Divear 51 208.75 309.71 300.41 309.51 0.00006 0.29 145.72 240.69 Wach1 729.9783 Divear 26.7 300.875 310.17 300.65 310.10 0.00006 0.29 145.7 240.69	ach1	847.8298	Regional	86.6	309.3	312.05	310.1	312.05	0.000003	0.11	785.25	282.35	0.02
Reach1 786.1021 [0 Year 12.2 309.8 309.8 300.8 0.00003 0.05 27.7.2 239.04 Reach1 786.1621 [S Year 19.2 308.9 310.17 309.57 310.17 0.000007 0.06 336.68 241.3 Reach1 786.1621 [Regional 86.6 308.9 312.03 309.57 310.3 0.000002 0.09 970.86 377.75 Reach1 729.9763 [Vear 5.1 308.75 309.51 309.54 300.87 10.00139 0.33 68.8.1 237.77 Reach1 729.9763 [Vear 9 308.75 309.71 309.41 309.71 0.00016 0.22 10.86 4.92 115.61 Reach1 729.9763 [Vear 19.2 308.75 310.01 300.55 310.03 0.00066 0.22 10.85 240.61 Reach1 729.9763 [Vear 19.2 308.75 310.3 300.57 310.3 0.00076 0.33 17.97 242.43 Reach1	ach1	786.1621	2 Year	5.1	308.9	309.56	309.29	309.58	0.001297	0.68	9.57	28.08	0.32
Bench1 786.1621 55 Year 192 30.08 310.03 300.57 310.03 0.000005 0.06 272.61 238.80 Bench1 786.1621 Breginnal 86.5 308.9 310.1 300.00007 0.08 330.68 241.43 Bench1 786.1621 Breginnal 86.6 308.9 310.2 309.57 310.3 0.000007 0.08 330.68 241.43 Bench1 728.0763 Vear 5.1 308.75 309.24 309.56 0.00022 0.09 970.86 327.75 Bench1 729.9763 Vear 5.1 308.75 309.84 309.55 308.80 0.00066 0.29 445.72 240.69 Bench1 729.9773 Storea 26.7 308.75 310.3 30.00007 0.33 209.75 247.94 Bench1 729.9773 Breginnal 86.6 308.75 310.23 300.0007 0.33 209.75 247.94 Bench1 677.7048 <													0.02
Beach 786.161 S0 Year 26.7 30.8 310.17 30.95.7 310.17 0.00007 0.08 30.6.8 24.0.7 Beach1 786.1621 Begional 86.6 30.8 30.95.7 312.05 0.00002 0.09 970.36 877.75 Beach1 722.9763 Ivar 9 308.75 309.57 302.05 0.00027 0.18 43.68 24.14 Reach1 722.9763 Ivar 9 308.75 309.85 309.85 309.85 0.00026 0.22 110.35 239.27 Beach1 729.9763 Ivear 12.2 308.75 310.03 309.55 310.01 0.00066 0.22 14.57 244.69 Veach1 729.9763 Ivear 36.5 310.3 309.77 310.3 0.00076 0.33 10.95 244.91 Reach1 729.9763 Ivear 51 308.65 310.23 309.71 310.33 0.00076 0.33 10.95 244.91 <td></td> <td>0.02</td>													0.02
Pach 12 786.1621 Regional 86.6 308.9 312.05 309.57 312.05 0.000020 0.009 970.86 377.75 each1 729.9763 Year 9 308.75 309.71 309.71 0.000159 0.35 66.31 237.75 each1 729.9763 Stear 9 308.75 309.71 309.71 0.00056 0.26 110.35 239.77 each1 729.9763 Stear 12.2 308.75 310.03 309.55 310.03 0.000066 0.26 110.35 239.72 each1 729.9763 Regional 86.6 308.75 312.05 300.76 312.05 0.000067 0.31 179.5 242.64 teach1 729.9763 Regional 86.66 309.71 309.41 0.000743 1.28 39.9 7.73 teach1 677.7048 Year 5.1 308.66 309.41 0.00072 0.18 113.8 272.06 teach1 677.7048 Yea													0.02
Name Name Name Name Name Name Name Name Stach1 729 9763 Year 9 308 75 309 87 309 84 309 95 300 81 300 95 63.31 237 77 Stech1 729 9763 Divear 12.2 308 75 300 88 309 55 300.89 0.000056 0.26 110.35 239 27 Stech1 729 9763 Divear 26.7 308 75 310.01 300 955 310.01 0.000066 0.28 1145 72 242.64 Steach1 729 9763 Begional 86.6 308 75 310.03 300 76 310.03 0.000076 0.31 2295.73 Steach1 677 7048 Stear 9 308.66 309.71 309.86 300.87 310.30 0.000072 0.18 118.78 272.66 Steach1 677 7048 Stear 9 308.66 310.93 30.941 30.0371 0.000032 0.18 118.78 272.66	ach1												0.03
Vex.h1 729.9763 Year 9 308.75 309.71 0.00197 0.00106 0.25 110.35 239.27 teach1 729.9763 10 Year 12.2 308.75 310.03 309.55 309.80 0.000068 0.26 110.35 239.27 teach1 729.9763 25 Year 19.2 308.75 310.13 309.55 310.13 0.000076 0.35 209.75 242.94 teach1 729.9763 Regional 86.6 308.75 310.3 309.76 312.05 0.00001 0.21 690.18 295.73 teach1 677.7048 114.87 272.06 73 273.43 272.06 teach1 677.7048 114.87 272.06 309.41 0.00002 0.16 167.04 274.43 teach1 677.7048 114.87 277.36 277.38 275.67 275.67 teach1 677.7048 10.07 308.66 310.27 30.00003 0.21 246.65 277.38 <td>ach1</td> <td>786.1621</td> <td>Regional</td> <td>86.6</td> <td>308.9</td> <td>312.05</td> <td>309.57</td> <td>312.05</td> <td>0.000002</td> <td>0.09</td> <td>970.86</td> <td>377.75</td> <td>0.02</td>	ach1	786.1621	Regional	86.6	308.9	312.05	309.57	312.05	0.000002	0.09	970.86	377.75	0.02
Presch 729.9763 Diver 12.2 308.75 309.88 309.55 310.03 0.000068 0.26 110.35 239.27 teach1 729.9763 S0 Year 12.2 308.75 310.03 309.55 310.03 0.000067 0.31 17.8.5 242.94 teach1 729.9763 Bio Year 36.5 308.75 310.21 0.000067 0.31 17.8.5 242.94 teach1 729.9763 Regional 86.6 309.75 312.05 0.0001 0.21 690.18 295.73 teach1 677.7048 2 Year 9 308.66 309.32 309.71 0.000036 0.18 118.78 272.06 teach1 677.7048 S Year 9 308.66 310.03 309.44 310.03 0.00027 0.19 207.52 275.67 teach1 677.7048 S Year 19.2 308.66 310.29 0.000036 0.21 240.05 277.38 teach1 677.7048 <	ach1	729.9763	2 Year	5.1	308.75	309.5	309.24	309.56	0.002278	1.08	4.92	15.63	0.45
Reach1 729.9763 25 Year 19.2 39.875 310.03 309.55 310.01 0.000067 0.31 177.5 242.06 Aeach1 729.9763 Begional 86.6 308.75 310.13 309.57 310.3 0.000076 0.31 179.5 242.679 Aeach1 772.9.9763 Regional 86.6 308.75 312.05 0.000076 0.35 209.75 246.79 Aeach1 677.7048 Year 5.1 308.66 309.71 309.33 309.71 0.000034 1.8 118.78 272.06 Reach1 677.7048 10 Year 12.2 308.66 310.03 309.46 310.017 0.000036 0.21 246.05 277.38 Reach1 677.7048 100 Year 36.5 308.66 310.17 309.46 310.10 0.000036 0.21 246.05 277.38 Reach1 677.7048 10.01 Year 36.5 308.67 310.20 0.000031 0.11 212.82 284.						309.71	309.41						0.12
Breach1 729 9763 50 Year 26.7 30.875 310.17 309.55 310.17 0.000076 0.31 179.5 242.94 Reach1 729.9763 Regional 86.6 308.75 312.05 309.76 312.05 0.000016 0.21 690.18 295.73 Reach1 677.7048 PYear 9 308.66 309.32 309.45 309.84 0.00034 1.28 3.99 7.73 Reach1 677.7048 PYear 9 308.66 309.32 309.45 309.84 0.000022 0.16 167.09 273.43 Reach1 677.7048 DYear 2.6.7 308.66 310.03 309.46 310.10 0.000036 0.21 246.05 277.38 Reach1 677.7048 DYear 2.6.7 308.66 310.29 309.46 310.17 0.000036 0.21 246.05 277.38 Reach1 677.7048 Regional 8.6.6 308.97 310.03 309.37 310.03													0.08
Reach1 729.9763 INO Year 36.5 308.75 310.3 309.57 310.3 0.000076 0.3.5 209.75 246.79 Reach1 772.9763 Regional 86.6 308.75 312.05 309.76 312.05 0.000076 0.3.5 209.75 246.79 Reach1 677.7048 Vear 5.1 308.66 309.23 309.14 0.000344 1.28 3.9.9 7.73 Reach1 677.7048 IO Year 12.2 308.66 309.88 309.44 3.009.71 0.000036 0.21 126.65 277.78 Reach1 677.7048 IO Year 2.5. 308.66 310.17 309.46 310.17 0.000036 0.21 24.66.5 277.78 Reach1 677.7048 IOU Year 35.5 308.55 310.29 300.003 0.21 24.64.05 277.38 Reach1 607.9432 Year 5.1 308.35 309.71 300.90 309.71 0.0000101 1.1 73.44													0.09
ich ich <td></td> <td>0.09</td>													0.09
Gench1 677.7048 S Year 9 308.66 309.71 309.33 309.72 0.000022 0.18 118.78 272.06 Reach1 677.7048 10 Year 12.2 308.66 309.45 309.48 30000022 0.16 167.09 273.43 Reach1 677.7048 50 Year 26.7 308.66 310.17 309.46 310.103 0.000036 0.21 246.05 277.38 Reach1 677.7048 Regional 86.6 306.66 312.05 0.000036 0.25 280.31 278.89 Reach1 607.9432 Ever 5.1 308.35 309.37 309.92 309.38 0.0000031 0.11 173.64 267.46 Reach1 607.9432 Ever 9 308.35 309.37 309.92 309.38 0.000001 0.11 123.42 268.88 Reach1 607.9432 Ever 19.2 308.35 310.01 300.00001 0.11 221.22 268.88	ach1	729.9763	Regional	86.6	308.75	312.05	309.76	312.05	0.00001	0.21	690.18	295.73	0.04
Gench1 677.7048 S Year 9 308.66 309.71 309.33 309.72 0.000022 0.18 118.78 272.06 Reach1 677.7048 10 Year 12.2 308.66 309.45 309.48 30000022 0.16 167.09 273.43 Reach1 677.7048 50 Year 26.7 308.66 310.17 309.46 310.103 0.000036 0.21 246.05 277.38 Reach1 677.7048 Regional 86.6 306.66 312.05 0.000036 0.25 280.31 278.89 Reach1 607.9432 Ever 5.1 308.35 309.37 309.92 309.38 0.0000031 0.11 173.64 267.46 Reach1 607.9432 Ever 9 308.35 309.37 309.92 309.38 0.000001 0.11 123.42 268.88 Reach1 607.9432 Ever 19.2 308.35 310.01 300.00001 0.11 221.22 268.88	ach1	677.7048	2 Year	5.1	308.66	309.32	309.15	309.41	0.003743	1.28	3.99	7.73	0.57
Beach1 677.7048 Diver 19.2 308.66 310.03 309.46 310.03 0.000027 0.19 207.52 275.67 Reach1 677.7048 50 Year 26.7 308.66 310.17 309.46 310.29 0.000036 0.22 280.51 277.38 Reach1 677.7048 Regional 86.6 302.66 310.29 0.000036 0.25 280.31 278.89 Reach1 607.7043 2 Year 5.1 308.35 309.57 312.05 0.000031 0.15 85.75 264.96 Reach1 607.9432 2 Year 12.2 308.35 309.71 309.90 309.71 0.00001 0.11 173.64 267.46 Reach1 607.9432 10 Year 12.2 308.35 310.17 309.3 310.03 0.00001 0.14 26.84 269.95 Reach1 607.9432 10 Year 36.5 310.17 309.3 310.29 0.000015 0.17 298.45 271.01				9									0.06
Ger.1 G77.7048 50 Year 26.7 308.66 310.17 309.46 310.17 0.00003 0.21 246.05 277.38 Reach1 G77.7048 Regional 86.6 308.20 309.46 310.29 0.000036 0.25 280.31 278.89 Reach1 G77.7048 Regional 86.6 308.66 312.05 309.97 312.05 0.000006 0.18 831.32 343.15 Reach1 G07.9432 Year 9 308.35 309.971 309.90 309.71 0.00001 0.11 173.64 267.46 Reach1 G07.9432 Evear 19 308.35 310.03 309.33 310.01 0.000012 0.14 260.81 267.46 Reach1 G07.9432 Evear 36.5 308.35 310.29 309.33 310.29 0.000012 0.21 332.94 283.64 Reach1 G07.9432 Regional 86.6 308.35 310.29 300.00015 0.16 910.46													0.05
Beach1 677.7048 100 Year 36.5 308.66 310.29 309.46 310.29 0.000036 0.25 280.31 278.89 Reach1 677.7048 Regional 86.6 308.66 312.05 309.57 312.05 0.000036 0.25 280.31 278.89 Reach1 607.9432 2 Year 5.1 308.35 309.37 308.92 309.38 0.000031 0.15 85.75 264.96 Reach1 607.9432 D Year 12.2 308.35 309.71 309.09 309.71 0.00001 0.11 173.64 267.46 Reach1 607.9432 D Year 12.2 308.35 310.03 309.33 310.03 0.000015 0.11 221.22 266.88 Reach1 607.9432 D Year 26.5 308.35 311.02 0.000015 0.17 298.45 271.01 Reach1 607.9432 D Year 26.7 308.35 312.05 0.000012 0.13 147.6 238.64													0.05
Veach1 607.9432 2 Year 5.1 308.35 309.37 308.92 309.38 0.000031 0.15 85.75 264.96 Reach1 607.9432 5 Year 9 308.35 309.71 309.09 309.71 0.00001 0.11 173.64 267.46 Reach1 607.9432 10 Year 12.2 308.35 310.03 309.71 0.00001 0.11 221.22 268.88 Reach1 607.9432 10 Year 12.2 308.35 310.03 309.33 310.07 0.000012 0.14 260.81 269.95 Reach1 607.9432 100 Year 36.5 308.35 310.29 309.33 310.29 0.000015 0.17 298.45 271.01 Reach1 557.6347 Year 5.1 308.45 309.37 300.0005 0.16 910.46 359.97 Reach1 557.6347 Year 9 308.45 309.28 309.28 300.0012 0.13 147.6 238.69				36.5	308.66	310.29	309.46	310.29	0.000036	0.25	280.31	278.89	0.07
Beach1 607.9432 5 Year 9 308.35 309.71 309.09 309.71 0.00001 0.11 173.64 267.46 Reach1 607.9432 10 Year 12.2 308.35 309.88 309.26 309.88 0.00009 0.11 221.22 268.88 Reach1 607.9432 50 Year 26.7 308.35 310.03 309.3 310.07 0.000012 0.14 260.81 269.95 Reach1 607.9432 100 Year 36.5 308.35 310.29 309.33 310.29 0.000021 0.21 332.94 283.64 Reach1 607.9432 Regional 86.6 308.35 310.29 309.37 0.00005 0.16 910.46 359.97 Reach1 557.6347 2 Year 5.1 308.45 309.37 309.37 0.00005 0.13 147.6 238.69 Reach1 557.6347 10 Year 12.2 308.45 310.03 309.28 310.03 0.000012 0.13	ach1	677.7048	Regional	86.6	308.66	312.05	309.57	312.05	0.000006	0.18	831.32	343.15	0.03
Beach1 607.9432 5 Year 9 308.35 309.71 309.09 309.71 0.00001 0.11 173.64 267.46 Reach1 607.9432 10 Year 12.2 308.35 309.88 309.26 309.88 0.00009 0.11 221.22 268.88 Reach1 607.9432 50 Year 26.7 308.35 310.03 309.3 310.07 0.000012 0.14 260.81 269.95 Reach1 607.9432 100 Year 36.5 308.35 310.29 309.33 310.29 0.000021 0.21 332.94 283.64 Reach1 607.9432 Regional 86.6 308.35 310.29 309.37 0.00005 0.16 910.46 359.97 Reach1 557.6347 2 Year 5.1 308.45 309.37 309.37 0.00005 0.13 147.6 238.69 Reach1 557.6347 10 Year 12.2 308.45 310.03 309.28 310.03 0.000012 0.13	ach1	607 9432	2 Year	5 1	308 35	309 37	308 97	309 38	0.000031	0 15	85 75	264 96	0.06
Reach1 607.9432 25 Year 19.2 308.35 310.03 309.3 310.03 0.000012 0.14 260.81 269.95 Reach1 607.9432 50 Year 26.7 308.35 310.17 309.3 310.17 0.000015 0.17 298.45 271.01 Reach1 607.9432 Regional 36.5 308.35 310.29 309.36 312.05 0.000005 0.16 910.46 359.97 Reach1 557.6347 Year 5.1 308.45 309.37 309.93 0.000015 0.13 147.6 238.69 Reach1 557.6347 Year 19.2 308.45 309.28 310.03 0.000012 0.13 147.6 238.69 Reach1 557.6347 Yo Year 12.2 308.45 310.29 300.928 310.03 0.000012 0.13 147.6 238.69 Reach1 557.6347 Yo Year 26.7 308.45 310.29 300.0012 0.13 190.17 245.51				9	308.35	309.71	309.09	309.71	0.00001	0.11	173.64	267.46	0.03
Beach1 607.9432 50 Year 26.7 308.35 310.17 309.3 310.17 0.000015 0.17 298.45 271.01 Reach1 607.9432 100 Year 36.5 308.35 310.29 309.3 310.29 0.000021 0.21 332.94 283.64 Reach1 607.9432 Regional 86.6 308.35 312.05 309.36 312.05 0.000021 0.21 332.94 283.97 Reach1 557.6347 2 Year 5.1 308.45 309.37 309.37 0.000054 0.2 68.69 237.05 Reach1 557.6347 5 Year 9 308.45 309.7 309.11 309.7 0.000015 0.13 147.6 238.69 Reach1 557.6347 10 Year 12.2 308.45 310.17 309.28 310.17 0.000012 0.17 225.51 241.53 Reach1 557.6347 100 Year 36.5 308.45 310.29 300.30 0.000029 0.24													0.03
Reach1 607.9432 100 Year 36.5 308.35 310.29 309.3 310.29 0.000021 0.21 332.94 283.64 Reach1 607.9432 Regional 86.6 308.35 312.05 309.36 312.05 0.00005 0.16 910.46 359.97 Reach1 557.6347 2 Year 5.1 308.45 309.37 308.94 309.7 0.000054 0.22 68.69 237.05 Reach1 557.6347 5 Year 9 308.45 309.7 309.11 309.7 0.000012 0.13 147.6 238.69 Reach1 557.6347 10 Year 12.2 308.45 310.03 309.28 310.03 0.00012 0.13 190.17 240.65 Reach1 557.6347 50 Year 26.7 308.45 310.29 300.022 0.2 25.9.32 245.23 Reach1 557.6347 100 Year 36.5 308.45 310.29 309.37 0.000029 0.24 289.44													0.04
Reach1 607.9432 Regional 86.6 308.35 312.05 309.36 312.05 0.000005 0.16 910.46 359.97 Reach1 557.6347 2 Year 5.1 308.45 309.37 309.13 309.7 0.000054 0.2 66.69 237.05 Reach1 557.6347 10 Year 12.2 308.45 309.73 309.13 309.7 0.000015 0.13 147.6 238.69 Reach1 557.6347 10 Year 12.2 308.45 310.03 309.28 310.03 0.000018 0.17 225.51 241.53 Reach1 557.6347 10 Year 36.5 308.45 310.29 0.000022 0.2 259.32 245.23 Reach1 557.6347 100 Year 36.6 308.45 310.29 309.31 312.05 0.000006 0.18 818.88 328.02 Reach1 523.273 10 Year 5.1 308.36 309.77 309.03 309.7 0.000015 0.14													0.04
Reach1 557.6347 5 Year 9 308.45 309.7 309.11 309.7 0.000015 0.13 147.6 238.69 Reach1 557.6347 10 Year 12.2 308.45 309.88 309.28 309.88 0.000012 0.13 190.17 240.65 Reach1 557.6347 25 Year 19.2 308.45 310.03 309.28 310.03 0.000018 0.17 225.51 241.53 Reach1 557.6347 50 Year 26.7 308.45 310.17 309.28 310.17 0.000022 0.2 259.32 245.23 Reach1 557.6347 Regional 86.6 308.45 310.29 309.3 310.29 0.000029 0.24 289.44 246.73 Reach1 557.6347 Regional 86.6 308.45 312.05 309.41 312.05 0.000029 0.24 289.44 246.73 Reach1 523.273 Regional 86.6 308.45 312.05 309.37 0.000052 0.21 67.65 233.37 Reach1 523.273 Year	ach1			86.6	308.35	312.05	309.36	312.05	0.000005	0.16	910.46	359.97	0.03
Reach1 557.6347 5 Year 9 308.45 309.7 309.11 309.7 0.000015 0.13 147.6 238.69 Reach1 557.6347 10 Year 12.2 308.45 309.88 309.28 309.88 0.000012 0.13 190.17 240.65 Reach1 557.6347 25 Year 19.2 308.45 310.03 309.28 310.03 0.000018 0.17 225.51 241.53 Reach1 557.6347 50 Year 26.7 308.45 310.17 309.28 310.17 0.000022 0.2 259.32 245.23 Reach1 557.6347 100 Year 36.5 308.45 310.29 309.3 310.29 0.000029 0.24 289.44 246.73 Reach1 557.6347 Regional 86.6 308.45 312.05 309.41 312.05 0.0000029 0.24 289.44 246.73 Reach1 523.273 Pear 5.1 308.36 309.37 308.85 309.37 0.000052 0.21 67.65 233.37 Reach1 523.273	ach1	557 6217	2 Year	ξ 1	308 15	200 27	308 04	200 27	0 000054	0.2	68 60	227 OF	0.07
Reach1 557.6347 10 Year 12.2 308.45 309.88 309.28 309.88 0.00012 0.13 190.17 240.65 Reach1 557.6347 25 Year 19.2 308.45 310.03 309.28 310.03 0.000018 0.17 225.51 241.53 Reach1 557.6347 50 Year 26.7 308.45 310.17 309.28 310.17 0.000022 0.2 259.32 245.23 Reach1 557.6347 100 Year 36.5 308.45 310.29 0.000029 0.24 289.44 246.73 Reach1 557.6347 Regional 86.6 308.45 310.29 0.000029 0.24 289.44 246.73 Reach1 557.6347 Regional 86.6 308.45 310.29 0.000025 0.21 67.65 233.37 Reach1 523.273 Year 5.1 308.36 309.3 309.7 0.000015 0.14 145.93 236.49 Reach1 523.273													0.07
Accench 1 557.6347 50 Year 26.7 308.45 310.17 309.28 310.17 0.000022 0.2 259.32 245.23 Acench 1 557.6347 100 Year 36.5 308.45 310.29 309.3 310.29 0.000029 0.24 289.44 246.73 Acench 1 557.6347 Regional 86.6 308.45 312.05 309.41 312.05 0.000006 0.18 818.88 328.02 Acench 1 523.273 2 Year 5.1 308.36 309.37 309.33 309.7 0.000052 0.21 67.65 233.37 Acench 1 523.273 5 Year 9 308.36 309.7 309.03 309.7 0.000015 0.14 145.93 236.49 Acench 1 523.273 10 Year 12.2 308.36 309.32 309.38 0.000012 0.14 188.08 237.93 Acench 1 523.273 10 Year 12.2 308.36 310.17 309.32 310.03 0.000018 0.18 230.12 238.91 Acench 1 523.273 5	ach1	557.6347	10 Year	12.2	308.45	309.88	309.28	309.88	0.000012	0.13	190.17	240.65	0.04
Reach1 557.6347 100 Year 36.5 308.45 310.29 309.3 310.29 0.000029 0.24 289.44 246.73 Reach1 557.6347 Regional 86.6 308.45 312.05 309.41 312.05 0.000006 0.18 818.88 328.02 Reach1 557.6347 Regional 86.6 308.45 312.05 309.41 312.05 0.00006 0.18 818.88 328.02 Reach1 523.273 2 Year 5.1 308.36 309.37 308.85 309.37 0.000052 0.21 67.65 233.37 Reach1 523.273 5 Year 9 308.36 309.7 309.03 309.7 0.00015 0.14 145.93 236.49 Reach1 523.273 10 Year 12.2 308.36 309.32 309.32 300.03 0.00012 0.14 188.08 237.93 Reach1 523.273 10 Year 19.2 308.36 310.17 309.32 310.17 0.000012 0.21 256.22 239.8 Reach1 523.273 <													0.05
Reach1 557.6347 Regional 86.6 308.45 312.05 309.41 312.05 0.000006 0.18 818.88 328.02 Reach1 523.273 2 Year 5.1 308.36 309.37 308.85 309.37 0.000052 0.21 67.65 233.37 Reach1 523.273 5 Year 9 308.36 309.7 309.03 309.7 0.000015 0.14 145.93 236.49 Reach1 523.273 10 Year 12.2 308.36 309.32 309.88 0.000012 0.14 145.93 236.49 Reach1 523.273 10 Year 12.2 308.36 309.32 309.88 0.000012 0.14 188.08 237.93 Reach1 523.273 10 Year 12.2 308.36 310.03 309.32 310.03 0.000018 0.18 232.01 238.91 Reach1 523.273 50 Year 26.7 308.36 310.29 309.32 310.17 0.000029 0.25													0.05
Reach1 523.273 5 Year 9 308.36 309.7 309.03 309.7 0.000015 0.14 145.93 236.49 Reach1 523.273 10 Year 12.2 308.36 309.88 309.32 309.88 0.000015 0.14 145.93 236.49 Reach1 523.273 10 Year 12.2 308.36 309.88 309.32 309.88 0.00012 0.14 188.08 237.93 Reach1 523.273 50 Year 19.2 308.36 310.03 309.32 310.03 0.00018 0.18 223.01 238.91 Reach1 523.273 100 Year 36.5 308.36 310.29 309.32 310.17 0.000029 0.25 285.58 241.26 Reach1 523.273 100 Year 36.5 308.36 310.29 309.32 310.29 0.000029 0.25 285.58 241.26 Reach1 523.273 Regional 86.6 308.36 312.05 309.43 312.05 0.000006 0.18 830.33 336.33 Reach1 523.273													0.03
Reach1523.2735 Year9308.36309.7309.03309.70.0000150.14145.93236.49Reach1523.27310 Year12.2308.36309.88309.32309.880.000120.14188.08237.93Reach1523.27325 Year19.2308.36310.03309.32310.030.000180.18223.01238.91Reach1523.27350 Year26.7308.36310.17309.32310.170.0000220.21256.22239.8Reach1523.273100 Year36.5308.36310.29309.32310.290.0000290.25285.58241.26Reach1523.273Regional86.6308.36312.05309.43312.050.0000660.18830.33336.33Reach1523.273Regional86.6308.36312.05309.43312.050.0000660.18830.33336.33Reach1523.273Regional86.6308.36312.05309.43312.050.0000660.18830.33336.33Reach1523.273Regional86.6308.26309.34308.75309.370.0004950.687.9511.79Reach1490.75462 Year5.1308.26309.67308.93309.70.0004130.7619.89102.76Reach1490.754610 Year12.2308.26309.86309.05309.880.0002620.66 <td< td=""><td>ach1</td><td>F33 373</td><td>2 Voor</td><td></td><td>200.20</td><td>200.27</td><td>200.05</td><td>200.27</td><td>0.000050</td><td>0.24</td><td>C7 CF</td><td>222.27</td><td>0.07</td></td<>	ach1	F33 373	2 Voor		200.20	200.27	200.05	200.27	0.000050	0.24	C7 CF	222.27	0.07
Reach1 523.273 10 Year 12.2 308.36 309.88 309.32 309.88 0.00012 0.14 188.08 237.93 Reach1 523.273 25 Year 19.2 308.36 310.03 309.32 310.03 0.00018 0.18 223.01 238.91 Reach1 523.273 50 Year 26.7 308.36 310.17 309.32 310.17 0.000022 0.21 256.22 239.8 Reach1 523.273 100 Year 36.5 308.36 310.29 309.32 310.29 0.000029 0.25 285.58 241.26 Reach1 523.273 100 Year 36.5 308.36 310.29 309.32 310.29 0.000029 0.25 285.58 241.26 Reach1 523.273 Regional 86.6 308.36 312.05 309.43 312.05 0.000029 0.25 285.58 241.26 Reach1 523.273 Regional 86.6 308.36 312.05 309.43 312.05 0.000069 0.18 830.33 336.33 Reach1 490.7546 <td></td> <td>0.07</td>													0.07
Reach1 523.273 50 Year 26.7 308.36 310.17 309.32 310.17 0.000022 0.21 256.22 239.8 Reach1 523.273 100 Year 36.5 308.36 310.29 309.32 310.29 0.000029 0.25 285.58 241.26 Reach1 523.273 Regional 86.6 308.36 312.05 309.43 312.05 0.000009 0.25 285.58 241.26 Reach1 523.273 Regional 86.6 308.36 312.05 309.43 312.05 0.000006 0.18 830.33 336.33 Reach1 490.7546 2 Year 5.1 308.26 309.34 308.75 309.37 0.000495 0.68 7.95 11.79 Reach1 490.7546 5 Year 9 308.26 309.67 308.93 309.7 0.000413 0.76 19.89 102.76 Reach1 490.7546 10 Year 12.2 308.26 309.86 309.05 309.88 0.000262 0.66 39.13 103.74	ach1	523.273	10 Year	12.2	308.36	309.88	309.32	309.88	0.000012	0.14	188.08	237.93	0.04
Reach1 523.273 100 Year 36.5 308.36 310.29 309.32 310.29 0.000029 0.25 285.58 241.26 Reach1 523.273 Regional 86.6 308.36 312.05 309.43 312.05 0.000029 0.25 285.58 241.26 Reach1 523.273 Regional 86.6 308.36 312.05 309.43 312.05 0.000006 0.18 830.33 336.33 Reach1 490.7546 2 Year 5.1 308.26 309.34 308.75 309.37 0.000495 0.68 7.95 11.79 Reach1 490.7546 5 Year 9 308.26 309.67 308.93 309.7 0.000413 0.76 19.89 102.76 Reach1 490.7546 10 Year 12.2 308.26 309.86 309.05 309.88 0.000262 0.66 39.13 103.74													0.05
Reach1 523.273 Regional 86.6 308.36 312.05 309.43 312.05 0.000006 0.18 830.33 336.33 Reach1 490.7546 2 Year 5.1 308.26 309.34 308.75 309.37 0.000495 0.68 7.95 11.79 Reach1 490.7546 5 Year 9 308.26 309.67 308.93 309.7 0.000413 0.76 19.89 102.76 Reach1 490.7546 10 Year 12.2 308.26 309.86 309.05 309.88 0.000262 0.66 39.13 103.74													0.05
Image: Near Addition Image: Ne													0.08
Reach1 490.7546 5 Year 9 308.26 309.67 308.93 309.7 0.000413 0.76 19.89 102.76 Reach1 490.7546 10 Year 12.2 308.26 309.86 309.05 309.88 0.000262 0.66 39.13 103.74													
Reach1 490.7546 10 Year 12.2 308.26 309.86 309.05 309.88 0.000262 0.66 39.13 103.74													0.23
													0.22
	ach1	490.7546	25 Year	19.2	308.26	310.01	309.3	310.03	0.000321	0.78	53.64	105.02	0.2
Reach1 490.7546 50 Year 26.7 308.26 310.14 309.73 310.16 0.000365 0.88 68.01 106.9 Reach1 400.7546 100 Year 26.5 308.26 310.14 309.73 310.16 0.000365 0.88 68.01 106.9													0.22
Reach1 490.7546 100 Year 36.5 308.26 310.26 309.82 310.29 0.000437 1.01 80.92 112.38 Reach1 490.7546 Regional 86.6 308.26 312.04 310.12 312.05 0.000026 0.39 401.33 224.73													0.24 0.07


Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(m3/s)	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)	
Reach1	483.5387		Bridge									
		.										
Reach1	474.6852 474.6852		5.1	308.23 308.23	309.33 309.63	308.72 308.9	309.35 309.66	0.000476		8.06 12		0.22
Reach1 Reach1	474.6852		12.2	308.23	309.83	309.01	309.83	0.000318		36.08	89.84	0.24
Reach1	474.6852		19.2	308.23	309.97	309.26	309.99	0.000296		52.56		0.19
Reach1	474.6852	50 Year	26.7	308.23	310.12	309.49	310.14	0.000287	0.79	68.42	106.71	0.19
Reach1	474.6852	100 Year	36.5	308.23	310.24	309.71	310.26	0.000337	0.89	81.06	109.17	0.21
Reach1	474.6852	Regional	86.6	308.23	312.04	310.05	312.05	0.000022	0.36	395.47	219.28	0.06
Deceb 1	441 2250	2 Veer	7.9	200.2	200.28	200.0	200.22	0.001171	1.01	9.97	30.8	0.24
Reach1 Reach1	441.3358 441.3358		7.9		309.28 309.6	308.8 309.06	309.32 309.64	0.001171	1.01 1.05	21.55	30.8	0.34
Reach1	441.3358		21.9		309.75	309.39	309.81	0.00109		21.55		0.35
Reach1	441.3358		30.7	308.2	309.87	309.52	309.96	0.001504	1.61	38.18		0.42
Reach1	441.3358	50 Year	37.5	308.2	310.07	309.6	310.12	0.000821	1.3	58.45	102.15	0.32
Reach1	441.3358		47.8		310.2	309.65	310.24	0.000797	1.34		103.12	0.32
Reach1	441.3358	Regional	103.2	308.2	312.04	310.15	312.04	0.000053	0.55	328.61	178.58	0.09
Reach1	380.4584	2 Voor	7.9	308.08	309.28	308.68	309.29	0.000221	0.48	30.84	63.47	0.15
Reach1	380.4584		14.6		309.28		309.23	0.000221	0.48		87.47	0.15
Reach1	380.4584		21.9		309.76		309.77	0.000235			95.35	0.17
Reach1	380.4584	25 Year	30.7	308.08	309.9	309.15	309.91	0.000289	0.75	83.11	105.11	0.19
Reach1	380.4584		37.5	308.08	310.08	309.21	310.09	0.000244	0.74	102.09	106.05	0.17
Reach1	380.4584		47.8		310.19		310.21	0.000285	0.83	114.53	106.65	0.19
Reach1	380.4584	кеgional	103.2	308.08	312.03	309.5	312.04	0.000066	0.62	340.78	148.85	0.1
Reach1	378.7204	2 Year	7.9	308.08	309.28	308.68	309.29	0.000155	0.4	36.28	67.35	0.13
Reach1	378.7204		14.6		309.6	308.94	309.61	0.000133	0.47	61.97	91.42	0.13
Reach1	378.7204		21.9		309.76	309.08	309.77	0.000186	0.57	76.89	100.24	0.15
Reach1	378.7204	25 Year	30.7	308.08	309.9	309.08	309.91	0.000231	0.67	91.16	105.59	0.17
Reach1	378.7204		37.5		310.08	309.1	310.09	0.000201	0.67	110.18		0.16
Reach1	378.7204		47.8		310.19	309.18	310.21	0.000238			107.14	0.17
Reach1	378.7204	Regional	103.2	308.08	312.04	309.5	312.04	0.000061	0.6	351.15	150.34	0.1
Reach1	294.9459	2 Year	7.9	307.92	309.25	308.42	309.27	0.000336	0.66	12.65	14.49	0.19
Reach1	294.9459		14.6		309.6		309.6	0.000089		116.53	131.84	0.1
Reach1	294.9459	10 Year	21.9	307.92	309.75	308.84	309.76	0.000124	0.51	142.68	154.81	0.12
Reach1	294.9459		30.7	307.92	309.89	309.05	309.9			163.66		0.15
Reach1	294.9459		37.5		310.07	309.2	310.08					0.15
Reach1 Reach1	294.9459 294.9459		47.8 103.2		310.18 312.03	309.38 309.4	310.19 312.04	0.000201	0.75 0.68		158.52 198.99	0.16 0.11
Reaction	294.9459	Regional	105.2	507.92	512.05	509.4	512.04	0.000071	0.08	527.55	198.99	0.11
Reach1	291.1832	2 Year	7.9	307.92	309.25	308.42	309.27	0.000337	0.66	12.71	14.96	0.19
Reach1	291.1832		14.6		309.6	308.64	309.6		0.4	117.91	135.33	0.1
Reach1	291.1832	10 Year	21.9	307.92	309.75	308.84	309.76	0.00012	0.5	145.72	156.57	0.12
Reach1	291.1832		30.7		309.89		309.89	0.000162		166.93		0.14
Reach1	291.1832		37.5		310.07	309.2	310.07	0.000155			159.34	0.14
Reach1 Reach1	291.1832 291.1832		47.8 103.2		310.18 312.03	309.33 309.42	310.19 312.04	0.000195		213.8 533.65	160.35 199.22	0.16 0.11
	231.1032		103.2	307.32	512.03	505.42	512.04	3.000009	0.07	555.05	133.22	0.11
Reach1	211.9683	2 Year	7.9	307.76	309.25	308.22	309.26	0.00006	0.31	83.56	184.37	0.08
Reach1	211.9683		14.6				309.6					0.08
Reach1	211.9683		21.9		309.75		309.75	0.000074				0.1
Reach1	211.9683		30.7		309.88		309.88	0.0001	0.51	204.12	200.48	0.11
Reach1 Reach1	211.9683 211.9683		37.5 47.8		310.06 310.17	309 309.08	310.06 310.18	0.000094	0.52	240.77 264.06	204.86 207.26	0.11 0.13
Reach1	211.9083		103.2		312.03	309.08	312.03	0.0000117		705.32	207.20	0.08
Reach1	107.5073		10.5		309.25	308.11	309.25	0.00002	0.19			0.05
Reach1	107.5073		17.7		309.59	308.3	309.59	0.000025	0.24	215.21	147.66	0.06
Reach1	107.5073		25.1	307.6	309.74	308.47	309.75	0.000037	0.31	237.55		0.07
Reach1 Reach1	107.5073 107.5073		33.9 40.6		309.88 310.06		309.88 310.06		0.39	257.03 283.92	147.88 153.3	0.08 0.09
Reach1	107.5073		40.0 50.2		310.00		310.00	0.000033	0.42			0.09
Reach1	107.5073		103.3		312.03	308.72	312.03	0.000035	0.51	649.92	191.85	0.08
Reach1		2 Year	10.5		309.25	307.81	309.25	0.000014			126.02	0.04
Reach1		5 Year	17.7		309.59		309.59		0.24		127.29	0.05
Reach1		10 Year 25 Year	25.1 33.9	307.3 307.3	309.74 309.87	308.17 308.3	309.74 309.87	0.000031	0.32	225.88 242.55		0.07
Reach1 Reach1		25 Year 50 Year	40.6		309.87		309.87	0.000046				0.08
Reach1		100 Year	50.2		310.05		310.03	0.000066		203.09		0.03
Reach1		Regional	103.3		312.02	308.6	312.03	0.000039				0.08

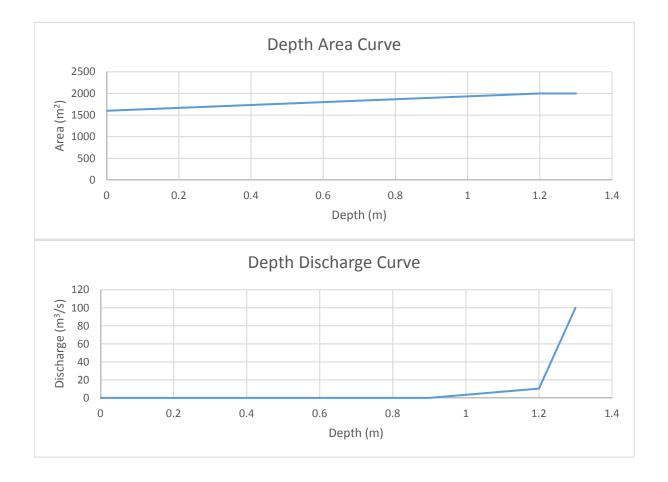
Sub-catchment	Area (ha)	Direct Connect Imperv (%)	Width (m)	Length (m)	Average Slope (%)	Pervious Suction Head (mm)	Pervious Saturated Hydraulic Conductivity (mm/hr)	Total Imperv. (%)	Direct Connect Imperv (%)	Percent Impervious Not Directly Connected	Overall Saturated Hydraulic Conductivity (mm/hr)
YRK-EXT04	1.08	0.0	241	45	2	147.0	11.0	0.0%	0.0%	0.0%	10.4
YRK-EXT05	0.97	0.0	194	50	2	144.0	11.0	0.0%	0.0%	0.0%	8.8
YRK-EXT06	0.35	0.0	174	20	2	144.0	11.0	0.0%	0.0%	0.0%	8.2
YRK-EXT07	0.32	0.0	160	20	2	144.2	11.0	0.0%	0.0%	0.0%	7.8
YRK-EXT08	0.60	0.0	171	35	2	144.0	11.0	0.0%	0.0%	0.0%	8.1
YRK-EXT09	1.39	0.0	199	70	2	144.0	11.0	0.0%	0.0%	0.0%	8.6
YRK-EXT10	0.95	34.2	316	30	2	144.0	11.0	34.2%	34.2%	0.0%	7.7
YRK-N-01-FUT	0.20	90.3	98	20	2	144.0	4.0	27.5%	90.3%	0.0%	4.0
YRK-N-02-FUT	0.57	92.3	284	20	2	144.0	4.4	53.8%	92.3%	0.0%	4.4
YRK-N-03-FUT	0.13	93.2	63	20	2	144.0	2.1	24.5%	93.2%	0.0%	2.1
YRK-N-04-FUT	0.33	83.2	164	20	2	144.0	1.6	27.5%	83.2%	0.0%	1.6
YRK-N-05-FUT	0.39	85.5	194	20	2	144.0	1.6	5.8%	85.5%	0.0%	1.6
YRK-N-06-FUT	0.62	55.9	310	20	2	188.0	1.4	86.0%	55.9%	0.0%	1.4
YRK-N-07-FUT	1.08	75.1	538	20	2	144.0	1.8	86.0%	75.1%	0.0%	1.8
YRK-N-08-FUT	0.54	71.4	271	20	2	144.0	1.6	95.0%	71.4%	0.0%	1.6
YRK-S-01-FUT	0.17	81.0	83	20	2	144.0	4.0	65.0%	81.0%	0.0%	4.0
YRK-S-02-FUT	0.54	78.4	269	20	2	144.0	4.4	27.5%	78.4%	0.0%	4.4
YRK-S-03-FUT	0.13	65.4	65	20	2	144.0	1.6	27.5%	65.4%	0.0%	1.6
YRK-S-04-FUT	0.29	66.1	147	20	2	144.0	1.6	35.0%	66.1%	0.0%	1.6
YRK-S-05-FUT	0.38	67.8	192	20	2	144.0	1.6	5.0%	67.8%	0.0%	1.6
YRK-S-06-FUT	0.44	77.8	221	20	2	188.0	1.4	20.0%	77.8%	0.0%	1.4
YRK-S-07-FUT	1.06	80.3	529	20	2	144.0	1.8	27.5%	80.3%	0.0%	1.8
YRK-S-08-FUT	0.58	66.7	288	20	2	144.0	1.6	42.5%	66.7%	0.0%	1.6

TABLE C3: FUTURE CONDITIONS HYDROLOGIC MODELLING PARAMETERS


Grangehill Estates Subdivision Phase 4 Stantec Consulting Ltd. June 2005 MIDUSS Outputs - December 15, 2004

Depth	Area	Depth	Outflow
(m)	(m ²)	(m)	(m ³ /s)
0	5806	0	0
0.1	6184	0.1	0.0075
0.2	6562	0.2	0.0195
0.3	6939	0.3	0.161
0.4	7317	0.4	2.424
0.5	7695	0.5	6.624

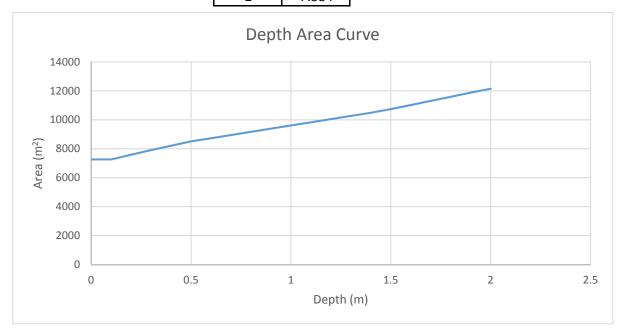
Box Culvert Extension Under CN Tracks Schaeffers May 1997

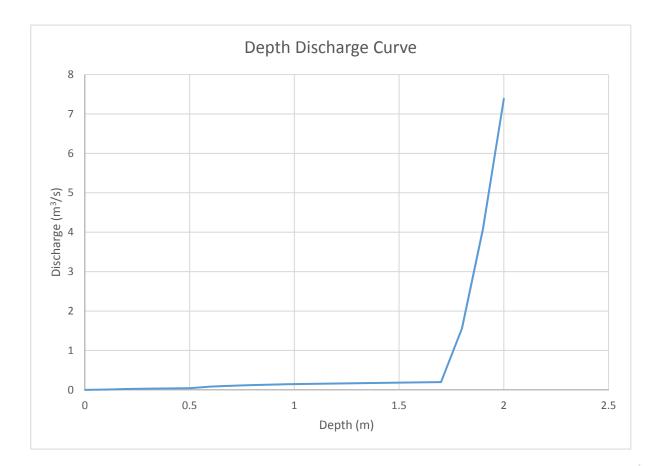

Depth	Area	Depth	Outflow
(m)	(m ²)	(m)	(m ³ /s)
0	2000	0	0
0.3	2000	0.3	0.42
0.8	5600	0.8	1.38
1.3	5560	1.3	3
1.8	10900	1.8	4.68
2.3	10880	2.3	6.36
2.8	18080	2.8	7.68
3.3	18080	3.3	8.88
3.8	79700	3.8	11.1
4.3	79700	4.3	12.3
4.6	79700	4.6	13.5

Grangehill Subdivision Phase 2 Buckthorn Crescent to Pond DWG Y-10

Depth	Area		
(m)	(m²)		
0	1600		
1.2	2000		
1.3	2000		

Depth	Outflow	
(m)	(m ³ /s)	
0	0	
0.07	0.002	
0.9	0.01	
1.2	10.284	
1.3	100	

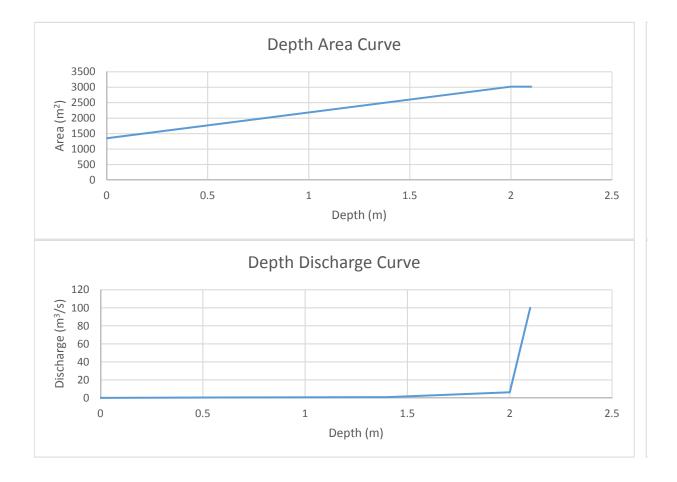



Grangehill Estates SWM Design Brief

Stanley Consulting October 1998

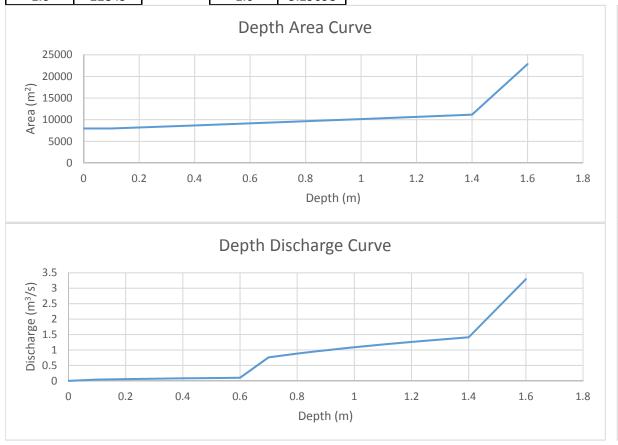
8787 - Grangehill Subdivision SWM Facility (Appendix B)

		-		
Depth	Area		Depth	Outflow
(m)	(m ²)		(m)	(m ³ /s)
0	7260		0	0
0.1	7260		0.1	0.007
0.2	7590		0.2	0.022
0.3	7910		0.3	0.031
0.5	8510		0.4	0.037
0.6	8730		0.5	0.043
0.7	8950		0.6	0.083
0.8	9170		0.7	0.106
0.9	9390		0.8	0.124
1	9610		0.9	0.135
1.1	9830		1	0.145
1.2	10050		1.1	0.154
1.3	10270		1.2	0.162
1.4	10490		1.3	0.17
1.5	10740		1.4	0.177
1.6	11020		1.5	0.184
1.7	11310		1.6	0.19
1.8	11590		1.7	0.196
1.9	11880		1.8	1.558
2	12150		1.9	4.077
		•	2	7.384



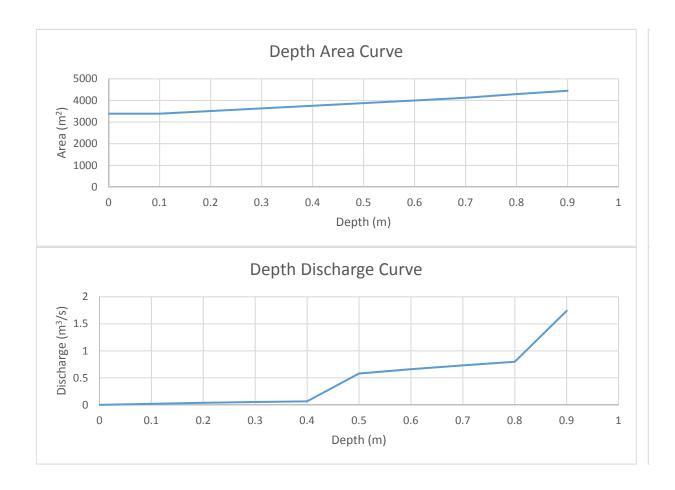
CheltonWood Subdivision S.W.M. Pond Detail DWG SWM-6

Depth	Area
(m)	(m ²)
0	1350
2	3020
2.1	3020


Depth	Outflow
(m)	(m ³ /s)
0	0
0.6	0.412
1.4	0.788
2	6.263
2.1	100

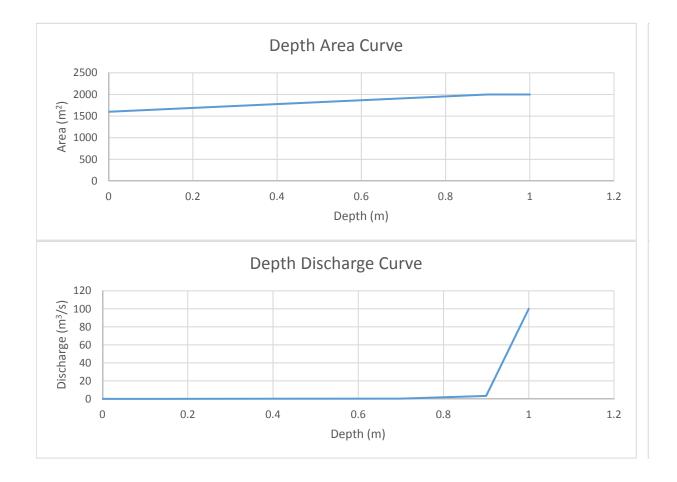
Watson Pond 2001

excel design calcs date modified 2005


-	-		
Depth	Area	Depth	Outflow
(m)	(m²)	(m)	(m ³ /s)
0	7963	0	0
0.1	7963	0.1	0.041192
0.2	8197.5	0.2	0.058254
0.3	8433.5	0.3	0.071346
0.4	8672	0.4	0.082383
0.5	8912.5	0.5	0.092107
0.6	9154.5	0.6	0.100899
0.7	9399	0.7	0.761759
0.8	9645.5	0.8	0.884371
0.9	9893.5	0.9	0.991941
1	10143.5	1	1.088936
1.1	10396	1.1	1.177972
1.2	10650	1.2	1.260735
1.3	10906	1.3	1.33839
1.4	11164.5	1.4	1.41178
1.6	22849	1.6	3.29098

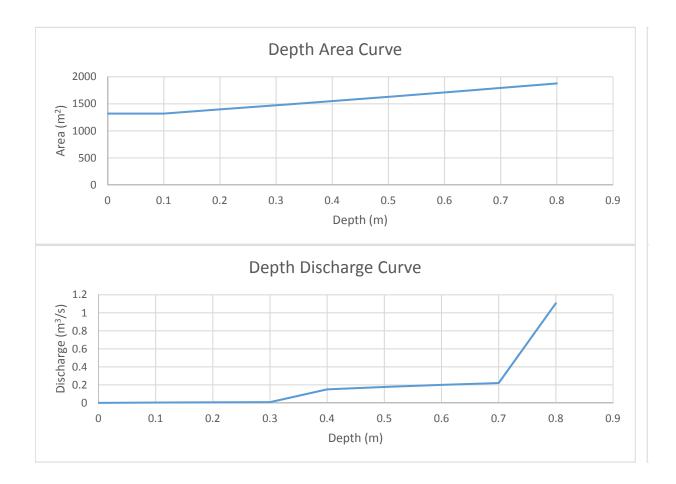
Watson Pond 1001 excel design calcs dated 2007

			_		
	Depth	Area		Depth	0
ſ	(m)	(m ²)		(m)	(
I	0	3388		0	
	0.1	3388		0.1	
	0.2	3509		0.2	
ſ	0.3	3631		0.3	
	0.4	3754		0.4	
	0.5	3876		0.5	
	0.6	3999		0.6	
	0.7	4124		0.7	
	0.8	4295		0.8	
ſ	0.9	4447		0.9	


Depth	Outflow
(m)	(m ³ /s)
0	0
0.1	0.02
0.2	0.039
0.3	0.054
0.4	0.065
0.5	0.58
0.6	0.661
0.7	0.732
0.8	0.798
0.9	1.74

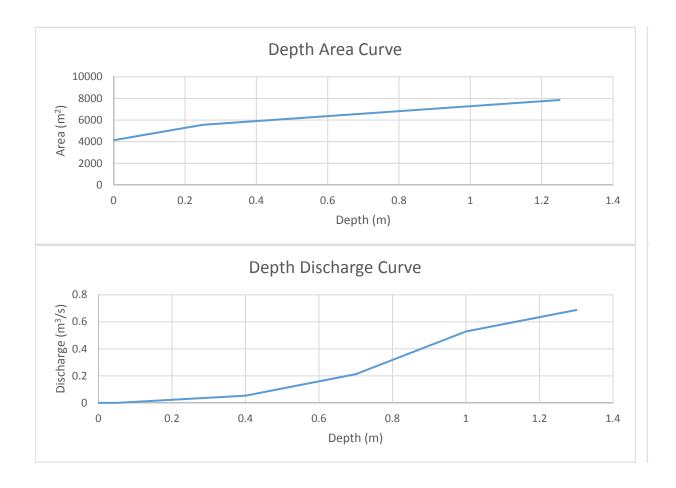
Watson Creek Subdivision Phase II SWM Pond 7001 DWG 13

Depth	Area
(m)	(m ²)
0	1600
0.9	2000
1	2000


Depth	Outflow
(m)	(m ³ /s)
0	0
0.125	0.008
0.4	0.196
0.7	0.317
0.9	3.275
1	100

Watson Pond 4001 excel design calcs dated 2007

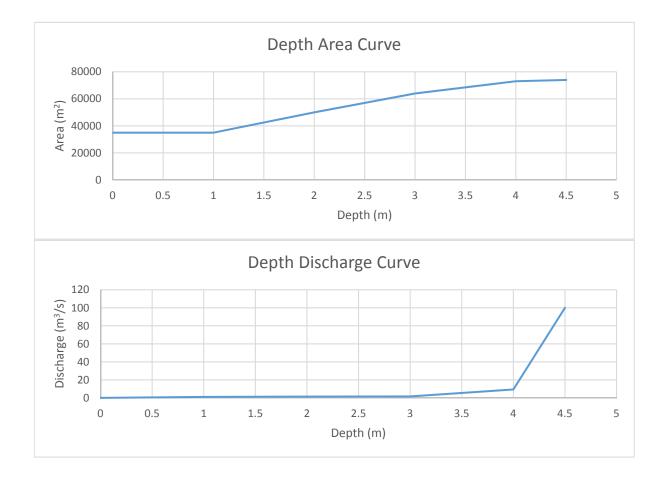
Depth	Area	
(m)	(m²)	
0	1320	
0.1	1320	
0.2	1398	
0.3	1473	
0.4	1551	
0.5	1631	
0.6	1711	
0.7	1794	
0.8	1878	


Depth	Outflow
(m)	(m ³ /s)
0	0
0.1	0.004
0.2	0.006
0.3	0.008
0.4	0.15
0.5	0.177
0.6	0.2
0.7	0.22
0.8	1.106

Grangehill Estates Phase 7 SWM Report exp February 2012 Design Calcs February 2012

Depth	Area
(m)	(m²)
0	4140
0.05	4424.6
0.1	4715.74
0.25	5563
0.35	5792.2
0.45	6021.4
0.55	6250.6
0.65	6479.8
0.75	6709
0.85	6938.2
0.95	7167.4
1.05	7396.6
1.25	7855

Depth	Outflow
(m)	(m ³ /s)
0	0
0.05	1E-07
0.4	0.05345
0.7	0.2126
1	0.5291
1.3	0.6876



Starwood Drive Online

Grangehill Estates Phase 4 SWM RPT Stantec June 2005

Depth	Area
(m)	(m ²)
0	35000
1	35000
2	50000
3	64000
4	73000
4.5	74000

Depth	Outflow
(m)	(m ³ /s)
0	0
1	1.1
2	1.4
3	1.6
4	9.3
4.5	100

Clythe Creek, Guelph, Ontario 2006 Temperature Report

Trout Unlimited Canada Technical Report No. ON-019

Prepared by:

Aaron Todd, Member Speed Valley Chapter

&

Silvia D'Amelio Ontario Provincial Biologist Trout Unlimited Canada

Clythe Creek, Guelph, Ontario 2006 Temperature Report

Trout Unlimited Canada Technical Report No. ON-019

Prepared by:

Aaron Todd, Member Speed Valley Chapter

&

Silvia D'Amelio Ontario Provincial Biologist Trout Unlimited Canada

Table of Contents

List of Figures	2
Background	3
Methods	4
Data and Results	6
Implications	.14
Acknowledgements	. 16
Appendix A: Individual Site Data	.17
Appendix B: Site Photographs	. 18
References	. 20

ï

List of Figures

Figure 1: Map of Clythe Creek showing the locations of the sites (number 1 to 6) where water
temperatures were monitored in 2006 4
Table 1. Monthly minimum (min), maximum (max) and average (avg) water temperatures (°C)
for monitoring sites in the Clythe Creek watershed
Figure 2: Summary of summer data from all sites. Average daily temperature, average maximum
and minimum temperature, average daily range, average daily rate of change and absolute
maximum rate of change were calculated for July and August
Figure 3: Maximum daily temperature. Sites are listed upstream (Site 1) to downstream (Site 6).8
Figure 4: Minimum daily temperature
Figure 5: Average daily temperature
Figure 6: Daily range in temperature
Figure 7: Daily average hourly rate of change in temperature
Figure 8: Longitudinal chart showing change in temperature from upstream to downstream
during the summer months (July and August)11
Figure 9: Trimean weekly average temperatures by site
Figure 10: Trimean weekly maximum temperatures by site
Figure 11: Stream classification of all sites (format from Stoneman and Jones 1996). Sites
plotted below blue line classify as cold water, between blue and green classified as cool
water and above green classified as warm water sites
Figure 12: Number of days by site where temperatures $\geq 20^{\circ}$ C were sustained for a 24h period.13

Background

Clythe Creek is a small watershed (21 km²) that drains to the Eramosa River on the east side of the City of Guelph. The Eramosa River and its tributaries (including Blue Springs Creek) have some of the highest quality water and stream habitat in southern Ontario.

Historical monitoring studies found coldwater species in Clythe Creek, including brook trout. A 1952 field survey of fish communities in the Speed Valley found brook trout in Clythe Creek at Highway 7 (York Road) and Watson Road North (*GRCA 1953*). The Ontario Ministry of Natural Resources currently classifies Clythe Creek as coldwater habitat.

Land use in the Clythe Creek watershed is dominated by agriculture; however, urban development is expanding in the lower portion of the watershed. The Eramosa-Blue Springs Watershed Study identified Clythe Creek as the most impacted tributary of the Eramosa River due to channel alteration and erosion, removal of riparian vegetation and online ponds and weirs (*Beak International et al. 1999*). These changes typically result in the degradation of water quality including temperature which in turn impacts the aquatic communities within the creek.

Salmonids, especially brook trout, are considered indicators of good water quality. Data collected in this study have been compared to the thermal preferences of brook trout. Though the upper thermal tolerance of brook trout is commonly known to be approximately 24°C (*Power 1980, Grande and Andersen 1991*), the optimal range for physical activity, growth and metabolism is 10-19 °C (*Power 1980* and references therein). Critical temperatures further limit available brook trout habitat at particular life history stages. Summer temperatures should not exceed 16 °C and spawning maximums should not exceed 12 °C with the optimum below 9 °C.

This study investigates the temperature profiles of Clythe Creek to assess its current temperature regimes. Information derived from the temperature profiles will be used in the identification of potential rehabilitation projects and stewardship activities to restore and improve coldwater habitat in Clythe Creek.

Methods

Water temperature monitoring was initiated at four sites (Sites 1-4) in the Clythe Creek watershed in June 2006. Two additional sites (Sites 5 and 6) were added in July 2006 to enhance the spatial resolution of the monitoring. Temperature data were collected at each site until the end of October 2006. The locations of the monitoring sites are illustrated in Figure 1. Photos of the watershed are presented Appendix B.

Figure 1: Map of Clythe Creek showing the locations of the sites (number 1 to 6) where water temperatures were monitored in 2006.

Water temperature data were collected at 30 minute intervals using Hobo Water Temp Pro loggers (Onset Computer Corporation). The loggers were periodically retrieved and redeployed throughout the study period to download the data. Logger malfunction resulted in the loss of some data at Site 3. The loggers were attached to a brick or cinder block using cable ties and placed in the centre of the stream channel. Efforts were made to eliminate direct warming from sunlight by placing the loggers in culverts beneath road crossings.

Temperature data were compiled using Microsoft Excel to create a seamless seasonal temperature plot for each location within the Creek. Erroneous data were removed where justification existed (e.g. where the logger was exposed to air due to low water levels, or following removal and before downloading). Daily averages, maximums, minimums and temperature ranges were plotted for each sampling location and compared among sampling sites. Trimean average and maximum temperatures were calculated weekly to identify potential sustained temperature trends. These trends account for the degree of temperature variability during the course of a week and may be indicative of the temperature stress felt by aquatic organisms within the Creek.

Data and Results

Water temperature monitoring results are shown in Figure 2. Monthly minimum, maximum and average water temperatures are shown in Table 1.

	JULY			AUGUST			SEPTEMBER		
SITE	min	max	avg	min	max	avg	min	max	avg
1	9.7	17.1	13.4	9.8	18.1	13.1	8.1	15.2	11.9
2	16.1	29.8	23.1	15.7	32.4	22.1	8.6	23.9	16.1
3				17.2	27.0	21.2	11.1	20.8	16.1
4	15.0	27.1	21.0	13.3	28.3	19.4	8.4	19.7	14.5
5				13.1	28.3	19.2	9.6	19.1	14.7
6				13.1	26.4	18.3	9.5	17.5	14.3

Table 1. Monthly minimum (min), maximum (max) and average (avg) water temperatures (°C) for
monitoring sites in the Clythe Creek watershed.

Water temperatures in the headwaters of the Creek (Site 1 - Wellington Road 29) reached a maximum of 18.1 °C on August 3, 2006. Average water temperatures in the headwaters of the Creek for the months of July and August were 13.4 and 13.1 °C, respectively (Figure 2).

Water temperatures increased significantly between Wellington Road 29 (Site 1) and Jones Baseline (Site 2) which is located 1.3 km downstream (Figure 2, 3, 5, 8, 9 and 10). A maximum temperature of 32.4 °C was reached at Site 2 on August 1 (Figure 3). Average temperatures for the months of July and August at Site 2 were 23.1 and 22.1 °C, respectively (Figure 5).

Daily ranges and hourly rates of change are greatest at Site 2 (Figure 6 and 7). Trimean maximum and average temperatures illustrate that all sites except Site 1 reach lethal temperatures for brook trout (Figure 9 and 10).

All sites downstream of Site 1 are classified as warm or warm/cool water habitats, whereas Site 1 is clearly a coldwater section (Figure 11).

Site 2 displays an extremely high frequency of days of sustained high temperatures, but the frequency decreases with downstream sites (Figure 12).

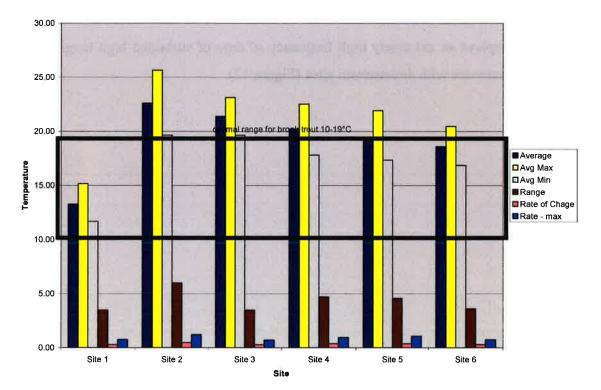


Figure 2: Summary of summer data from all sites. Average daily temperature, average maximum and minimum temperature, average daily range, average daily rate of change and absolute maximum rate of change were calculated for July and August.

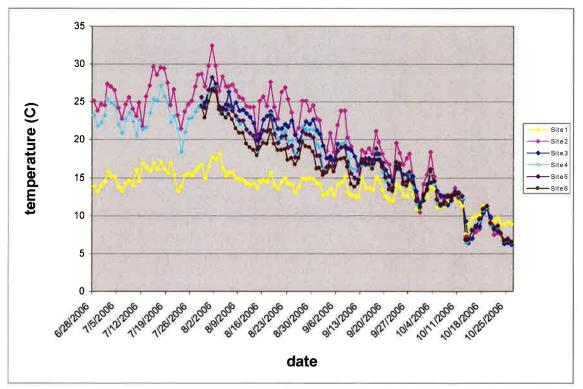


Figure 3: Maximum daily temperature. Sites are listed upstream (Site 1) to downstream (Site 6).

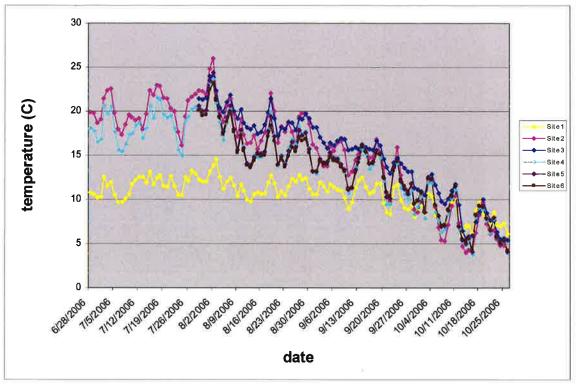


Figure 4: Minimum daily temperature.

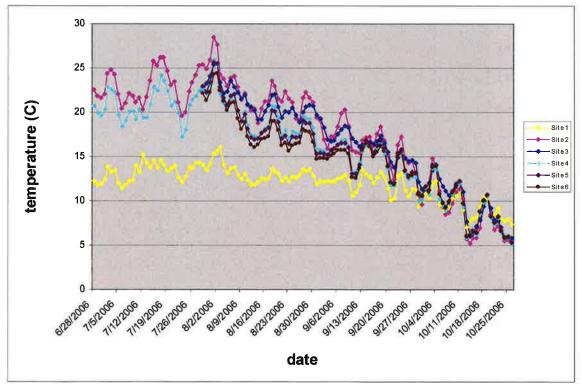


Figure 5: Average daily temperature.

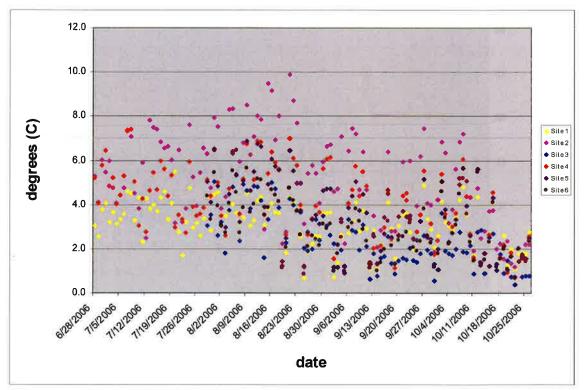


Figure 6: Daily range in temperature.

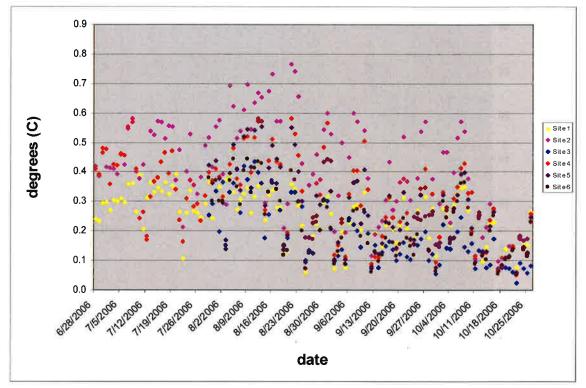


Figure 7: Daily average hourly rate of change in temperature.

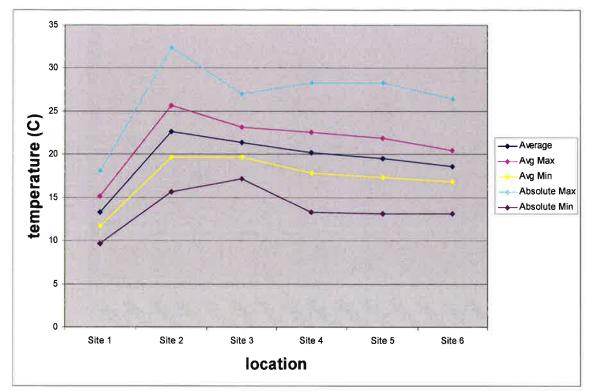


Figure 8: Longitudinal chart showing change in temperature from upstream to downstream during the summer months (July and August).

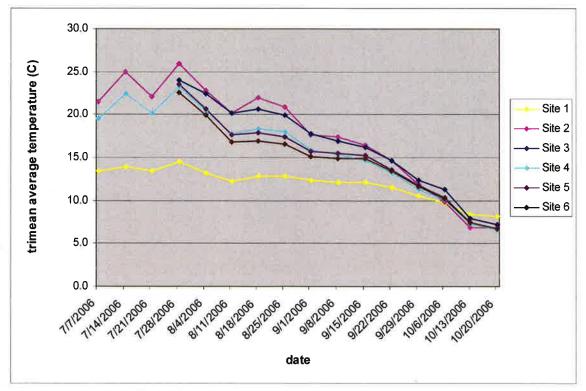


Figure 9: Trimean weekly average temperatures by site.

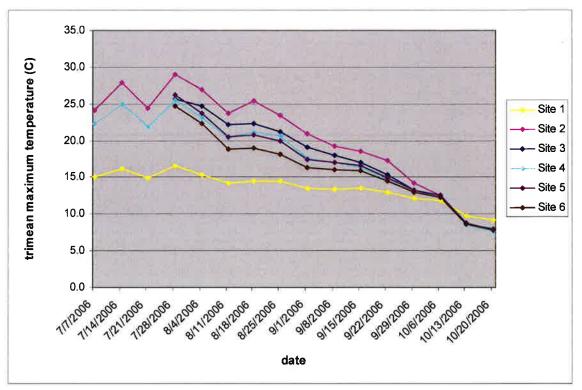


Figure 10: Trimean weekly maximum temperatures by site.

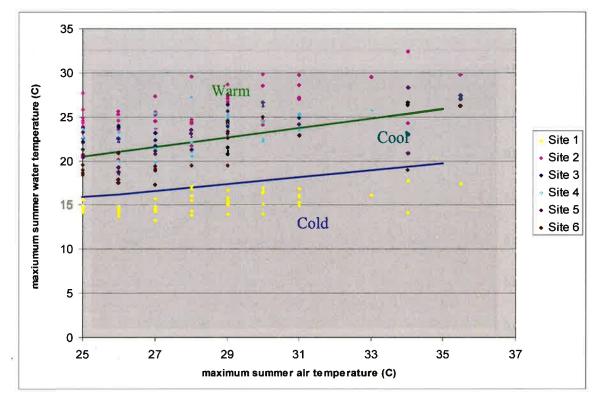


Figure 11: Stream classification of all sites (format from Stoneman and Jones 1996). Sites plotted below blue line classify as cold water, between blue and green classified as cool water and above green classified as warm water sites.

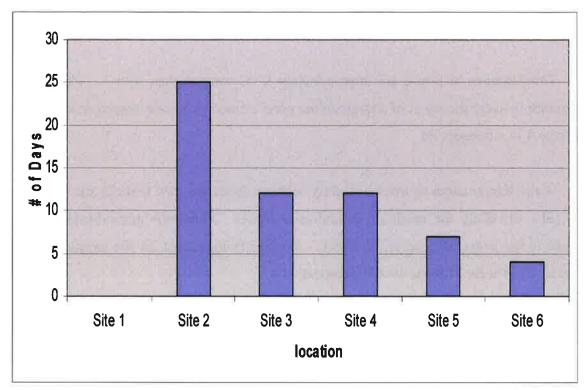


Figure 12: Number of days by site where temperatures $\geq 20^{\circ}$ C were sustained for a 24h period.

Implications

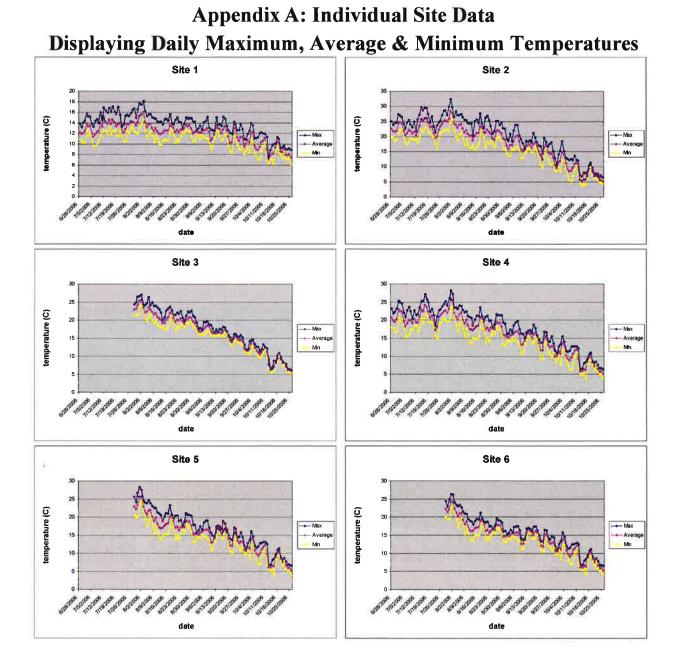
Temperatures at Site 2 are approximately 9 °C warmer than Site 1. The increase in temperature is likely the result of a large online pond created by a weir located at Jones Baseline (see Photo 1 in Appendix B).

Water temperatures decreased slightly between Jones Baseline (Site 2) and Watson Road North (Site 4); likely the result of groundwater inputs. Numerous groundwater seeps were observed in the lower sections of the Creek. Average temperatures for the months of July and August at Site 4 were 21.0 and 19.4 °C, respectively.

The combination of cold headwaters at Site 1 and the cooling of the creek due to coldwater inputs downstream of Site 2 illustrate significant potential for coldwater restoration. The removal of the barrier and associated impoundment just upstream of Site 2 would allow for the movement of coldwater further down the system. The coldwater inputs may mitigate general warming of the system allowing this creek to be cooled from top to bottom.

Additional potential thermal inputs have been identified downstream of Site 2. The effects of these inputs will be much better understood with the mitigation of Site 2. For example the slight increase in temperatures between Sites 3 and 4 can be investigated more clearly when the confounded effects of the upstream impoundment are removed.

It is recommended that the temperature loggers are redeployed in 2007 to collect another season of data and to enhance spatial resolution to assess specifically the impact of online ponds. In addition, the collection of water quality (chemistry) information at strategic locations would be beneficial in the assessment of the influence of land use activities; specifically the impacts of storm water management ponds in the developing lower portion of the watershed.


Based on these data it would be beneficial to survey the fish community composition in selected sections of the Creek to identify remnant coldwater communities. Sections sampled should include upstream of Wellington Road 29 (Site 1) and between Highway 7 (Site 3) and Watson Road North (Site 4). These are the most likely areas to support remnant populations of

coldwater species. The results should be compared to historical surveys to assess changes in community composition.

Acknowledgements

The late Walt Crawford provided the inspiration for this study.

The Environmental Monitoring and Reporting Branch of the Ontario Ministry of the Environment provided the water temperature loggers used in this study.

Appendix B: Site Photographs

Photo 1: Large online pond created by a weir at Jones Baseline. The pond is located downstream of Site 1 and immediately upstream of Site 2. The pond is likely the primary cause of the observed increase in water temperature.

Photo 2: Dense vegetation downstream of Jones Baseline (Site 2) presents a challenge to exploring the Creek. A pump used for taking water for the irrigation of a garden was observed in the Creek just downstream of Site 2.

Photo 3: Dense riparian vegetation typical of the Creek between Highway 7 (Site 3) and Watson Road North (Site 4). Groundwater seeps were observed in this section of Creek and watercress was observed in the channel.

Photo 4: The Creek meanders through a wetland immediately upstream of Watson Road North (Site 4). Hills to the north of the Creek have been cleared for development (construction in progress) and storm water ponds have been constructed.

Photo 5: Perched culvert at Watson Road North (Site 4) presents a significant barrier to fish migration. Large schools of minnows (and minnow traps) can usually be observed in the pool below the culvert.

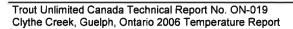


Photo 6: Sections of the Creek between Watson Road North (Site 4) and Watson Parkway (Site 5) have been channelized; however, the Creek is relatively narrow with areas of gravel streambed and some riparian cedar trees.

Photo 7: Damselfly observed in the section of Creek between Watson Road North (Site 4) and Watson Parkway (Site 5). Various insects hatches were observed over the summer in this section of the Creek.

Photo 8: Storm water management pond collects runoff from the developing portion of the watershed near Starwood Drive and Grange Road. The pond discharges to the Creek just upstream of Watson Parkway (Site 5).

Photo 9: Discharge from the storm water pond was consistently turbid throughout the summer. Water quality in Clythe Creek was noticeably impacted and sedimentation of the Creek channel downstream of the pond outlet was observed.

Photo 10: The Creek flows through a small patch of dense cedar forest between Watson Parkway (Site 5) and Highway 7 (Site 6). Numerous groundwater seeps can be found in this area. Sedimentation of the Creek channel is evident.

Photo 11: A long, dual-channelled, concrete culvert diverts the Creek from the north to the south side of the railway line.

Photo 12: The Creek passes under Highway 7 (Site 6) and flows along the north side of the highway toward its confluence with the Eramosa River. This section of the Creek is highly altered with numerous dams, weirs and ponds.

References

- Beak International Incorporated and Aquafor Beech Limited, 1999. Eramosa-Blue Springs Watershed Study Report - Parts 1 and 2: Watershed Report Card and Watershed Goals and Objectives.
- Beak International Incorporated et al., 1999. Eramosa-Blue Springs Watershed Study Report -Part 3: Recommended Watershed Plan and Implementation Strategy.

Grand River Conservation Authority, 1953. Speed Valley Report.

- Grande, M. and Anderson, S. 1991. Critical thermal maxima for young salmonids. Journal of Freshwater Ecology 6: 275-279.
- Power, G. 1980. The brook char, *Salvelinus fontinalis*. In Charrs: salmonids fishes of the genus *Salvelinus*. Kluwer Boston Inc., Boston, U.S.A. pp. 141-203.
- Stoneman, C.L. and Jones, M.L. 1996. A simple method to classify stream thermal stability with single observations of daily maximum water and air temperatures. North American Journal of Fisheries Management 16: 728-737.

Clythe Creek, Guelph, Ontario 2007 Temperature Report

Trout Unlimited Canada Technical Report No. ON-036

Prepared for: Speed Valley Chapter Guelph

Prepared by:

Silvia D'Amelio Ontario Provincial Biologist Trout Unlimited Canada

Clythe Creek, Guelph, Ontario 2007 Temperature Report

Trout Unlimited Canada Technical Report No. ON-036

Prepared for: Speed Valley Chapter Guelph

Prepared by:

Silvia D'Amelio Ontario Provincial Biologist Trout Unlimited Canada

Table of Contents

List of Tables and Figures	2
Background	4
Methods	6
Data and Results	
Summary Plots	. 11
mplications	. 19
Appendix A Individual Site Data	. 21
References	. 23

List of Tables and Figures

Figure 1: Study Site - Clythe Creek temperature monitoring locations (locations are
approximate)
Figure 2: Summary of summer data from all sites. Average daily temperatures, average
maximum and minimum temperatures, average daily range, average daily rate of change
and absolute maximum rate of change were calculated for July and August
Figure 3: Maximum daily temperature for Clythe Creek (sites C7 to C13 are listed upstream
to downstream)12
Figure 4: Maximum daily temperature for Clythe Creek (sites C18 to BS21 are listed
upstream to downstream)
Figure 5: Minimum daily temperature for Clythe Creek (sites C7 to C13 are listed upstream to
downstream)13
Figure 6: Minimum daily temperature for Clythe Creek (sites C18 to BS21 are listed upstream
to downstream)13
Figure 7: Average daily temperature for Clythe Creek (sites C7 to C13 are listed upstream to
downstream)14
Figure 8: Average daily temperature for Clythe Creek (sites C18 to BS21 are listed upstream
to downstream)14
Figure 9: Daily range in temperature at all sites
Figure 10: Average hourly rate of change in temperature per day at all sites
Figure 11: Stream classification of all sites (format from Stoneman and Jones 1996). Sites
plotted below blue line classify as cold water, between blue and green classified as cool
water and above green classified as warm water sites
Figure 12: Longitudinal chart showing change in temperature from upstream to downstream
during peak summer months (July and August). Solid points represent 2007 data, hollow
points represent 2006
Figure 13: Trimean average temperature for Clythe Creek (sites are listed upstream to
downstream). The red line marks 22°C 17
Figure 14: Trimean maximum temperature for Clythe Creek (sites are listed upstream to
downstream). The red line marks 22°C17

Figure 15: Number of days where temperatures were sustained over 19°C for a 24h period.. 18

Background

Clythe Creek is a small watershed (21 km²) that drains to the Eramosa River on the east side of the City of Guelph. The Eramosa River and its tributaries (e.g. Blue Springs Creek) have some of the highest quality water and stream habitat in southern Ontario.

Historical monitoring studies found cold water species in Clythe Creek. A 1952 field survey of fish communities in the Speed Valley found brook trout in Clythe Creek at Highway 7 (York Road) and Watson Road North (GRCA 1953). As a result, the Ontario Ministry of Natural Resources has classified Clythe Creek as coldwater habitat.

Land use in the Clythe Creek watershed is dominated by agriculture. However, urban development is expanding in the lower portion of the watershed. As a result, the Eramosa-Blue Springs Watershed Study identified Clythe Creek as the most impacted tributary of the Eramosa River. This is mainly due to channel alteration and erosion, removal of riparian vegetation and online ponds and weirs (Beak International et al. 1999). These types of changes typically result in the degradation of water quality, including temperature, which has negative impacts on aquatic communities in the creek.

Salmonids, especially brook trout, are often considered indicators of good water quality. Therefore the data collected from this study will be compared to the thermal preferences of brook trout documented in scientific literature. Although the upper thermal tolerance of brook trout is commonly known to be approximately 24°C (Ricker 1934, Power 1980, Grande and Andersen 1991), it has been well documented that their preferred range is 4°C to 20°C (Power 1980 and references therein). In order to better understand a brook trout's ability to fully and efficiently utilize its environment, it is necessary to understand that neither of these temperature ranges illustrates optimums for specific life stages. The optimal range for physical activity, growth and metabolism is 10°C to 19°C (Baldwin 1948, Graham 1949, MacCrimmon and Campbell 1969, Power 1980 and references therein, Dwyer et al 1983) with trout selecting a preferred range of 15°C to 17°C (Cherry et al. 1975). Optimal maximum temperatures to sustain a healthy brook trout population are 18°C to 19°C (Powers 1929, Creaser 1930, Ferguson 1958) and they actively avoid areas where temperatures approach 24°C (Meisner 1990). Critical temperatures further limit available brook trout habitat at particular life history stages. During the summer season, temperatures should not exceed 19°C and spawning maximums should not exceed 12°C with the optimum range of 6°C to 8°C (Hokanson 1973, Witzel and MacCrimmon 1983). It is well documented that temperature affects swimming performance and the overall cost of swimming. As a result, increases in temperature lead to increases in critical swimming velocity (Heggenes and Traaen 1988, Tang and Boisclair 1995).

This study investigates the temperature profiles of Clythe Creek to assess its current temperature regimes. In addition, the temperature profiles derived from the data will be utilized to identify future rehabilitation projects. The goal of this study is expand the monitoring program initiated in 2006 and to provide information for the restoration and maintenance of cold water habitats in Clythe Creek.

Methods

Temperature data loggers (Hobo Water Temp Pro loggers produced by Onset Computer Corporation) were launched at 17 sites in Clythe Creek, Blue Springs Creek and the Eramosa River. The locations of the monitoring sites are illustrated in Figure 1. For data analysis, sites are labelled by their stream and site number (C = Clythe Creek, E = Eramosa, BS = Blue Springs). Site C18 was located in the outflow of a stormwater management pond which drains directly into Clythe Creek.

Water temperature data were collected at 30 minute intervals. These data were compiled using Microsoft Excel to create seamless seasonal temperature plots for each location within the tributary. Data were summarized and daily averages, maximums, minimums and temperature ranges were plotted for each sampling location and compared among sampling sites. Additionally, longitudinal trends were compared among years and stream classification was identified using a method outlined by Stoneman and Jones (1996). Trimean average and maximum temperatures were calculated weekly to identify potential sustained temperature trends. These trends account for the degree of temperature variability within the system during the course of a week and may be more indicative of the actual temperature stress felt by aquatic organisms within the system. Baldwin (Hansen 2001) showed that a Trimean maximum of 22°C correlates to an overall maximum of 25.6°C, well over brook and brown trout tolerances.

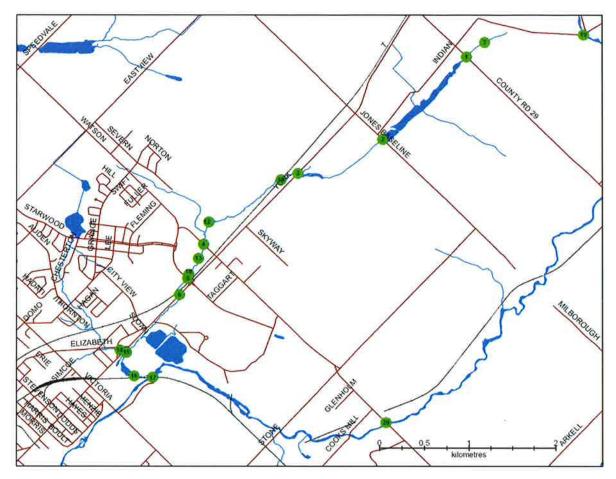


Figure 1: Study Site - Clythe Creek temperature monitoring locations (locations are approximate).

Data and Results

Of the 17 logger launched, 14 were retrieved and successfully downloaded. Water temperatures were captured from May 30 to November 21, 2007. Sites 14, 6 and 20 were either lost or were not retrievable due to water level changes. A cursory review of data collected revealed profiles consistent with air and not water temperatures for a portion of the monitoring period, at some sites. As a result data from sites C13, C18, C5, C15 and BS21 was removed prior to analysis.

For the period spanning July and August, summary data for Clythe Creek display optimal average, maximum and minimum temperatures for trout in its upper reaches, sites C7 and C1 (Figure 2). Sites C2 through E20 display average maximum temperatures above optimum, but most C2, C12, C4, C13, C18, C5 and C16, display minimum temperatures with the optimum range (Figure 2). Interestingly, temperatures generally rise from site C7 to C13 but fall at site C12 and again at C5 before rising significantly at site C15 (Figure 2). Sites in the Eramosa River (E17 and E20) display relatively high temperatures outside of the optimal range for brook trout. The most significant temperature difference exists between sites C1 and C2 (Figure 2). The single site in Blue Springs Creek (BS21) displays temperatures well within the optimum for brook trout (Figure 2).

Detailed daily temperatures reveal the highest maximum daily temperature recorded in Clythe Creek surpassed 30°C at site C2 at the end of June and at sites C4 and C13 at the beginning of August (Figure 3). Sites C15 and E16 also showed high daily temperatures and peaked at 29°C and 28°C respectively (Figure 4). Sites Site C7 maintained maximum daily temperatures below 16°C for the entire sampling period (Figure 3). Sites C7, C1 and BS21 were the only sites that did not reach lethal temperatures for book trout (Figures 3 and 4). All sites, except for C7 and C1, maintained maximum daily temperatures between 15° and 32° C from May to the beginning of October, with most surpassing 25 °C frequently (Figures 3 and 4).

Minimum daily temperatures for sites C3, C18, C16, E17 and E20 are often at or above 20°C (Figures 5 and 6). Sites C2, C12, C4, C13 and C5 display minimum daily temperatures that reach 20°C but do not sustain these high temperatures (Figures 5 and 6). Sites C7, C1 and BS2 never reach a minimum temperature of 20°C.

The average daily temperatures for sites C7, C1 and BS21 are consistently below 20°C for the entire sampling period (Figures 7 and 8). All other sites exceed 20°C, with sites C2, C18, C16 and E17 reaching or exceeding 25°C for short periods of time (Figures 7 and 8). Maximum, minimum and average daily temperatures show a decreasing trend for all sites from mid-September to the end of November (Figures 3, 4, 5, 6, 7, and 8). The single most significant difference in temperature between neighbouring sites was observed between C1 and C2 (Figures 3, 5, and 7). Site C18 (stormwater management pond outflow) displays the greatest degree of variability, relatively hot in June and August, but cooler in July (Figures 4, 6 and 8).

The highest daily range and daily average hourly rate of change in temperature was recorded at sites C4, C13 and C18 (Figures 9 and 10). Sites C7 and C3 showed consistently the least amount of variation in daily average hourly rate of change in temperature (Figures 9 and 10). The greatest variability in range and rate of change was observed at C18 (Figures 9 and 10).

According to the stream classification developed by Stoneman and Jones (1996), Figure 14 shows that sites C1 and C7 are classified as cold water. However, the remaining temperature monitoring sites show that Clythe Creek is classified as cool to warm water due to overlap between warm and cool water classifications for most sites (Figure 11). E17 displays a warm water classification, while E20 is mixed warm-cool (Figure 11). BS21 displays a cool to cold water classification (Figure 11).

The longitudinal profile for Clythe Creek indicates that water temperatures generally increase from C7 to C3 but minimum temperatures decrease from C7 to C1 (Figure 12). Average, minimum and absolute minimum temperatures also decrease from C3 to C4, while

maximums and absolute maximums increase (Figure 12). An increase from C4 to C13 is followed by a decrease to C18 and a narrowing of range to C5 (Figure 12). Temperature increases again to C15 before one final decrease to C16 (Figure 12). The most significant increase in temperature is between sites is between C1 and C2 (Figure 12). Data from 2006 (Todd and D'Amelio 2006) show that average, minimum and absolute minimums are lower in 2007, whereas maximums and absolute maximums show no consistent trends in comparison with 2007 (Figure 12).

Trimean averages at C2, C3, C18, C15, C16 and E17 surpass the 22°C maximum for brief periods (Figure 13). All other sites remain below the maximum (Figure 13). Trimean maximums above 22°C were observed at all sites with the exception of C7, C1 and BS21 (Figure 14).

Sites C3, C18 and C2 showed the greatest numbers of days where temperatures were greater than or equal to 20°C for a 24h period with a total of 14, 13 and 9 days respectively (Figure 15). Sites C1, C7 and BS21 did not experience any days where temperatures were greater than or equal to 20°C for a 24h period (Figure 15).

Summary Plots

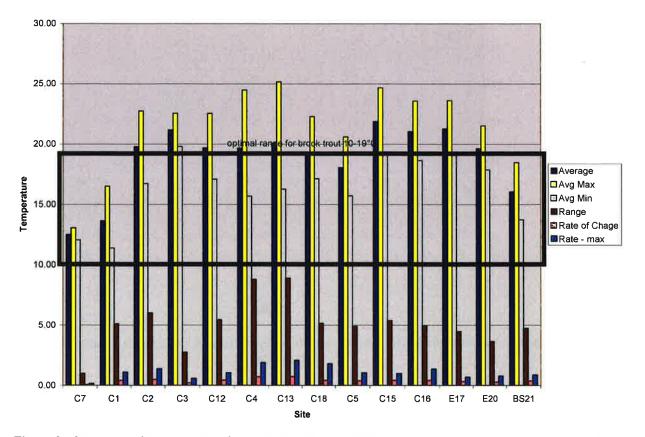


Figure 2: Summary of summer data from all sites. Average daily temperatures, average maximum and minimum temperatures, average daily range, average daily rate of change and absolute maximum rate of change were calculated for July and August.

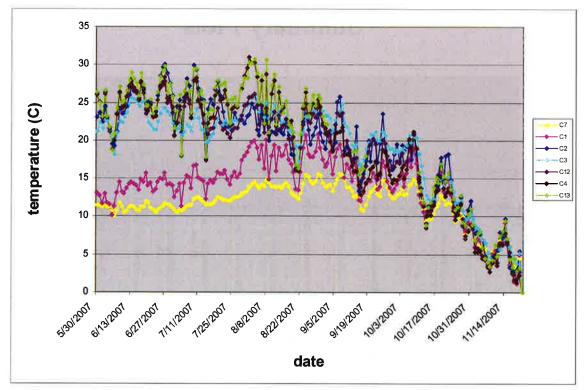


Figure 3: Maximum daily temperature for Clythe Creek (sites C7 to C13 are listed upstream to downstream).

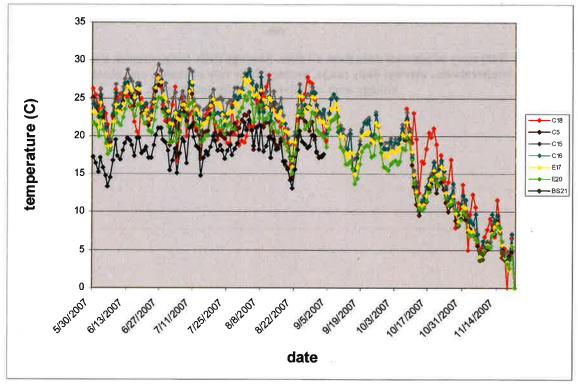


Figure 4: Maximum daily temperature for Clythe Creek (sites C18 to BS21 are listed upstream to downstream).

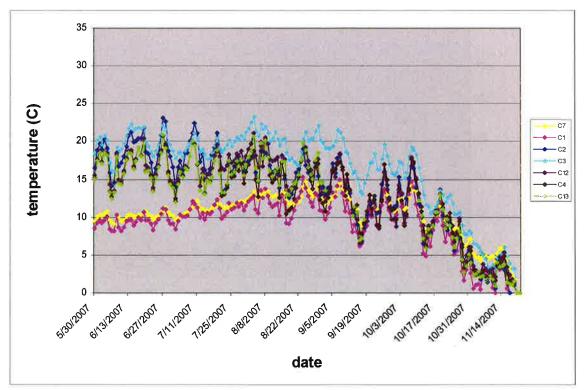


Figure 5: Minimum daily temperature for Clythe Creek (sites C7 to C13 are listed upstream to downstream).

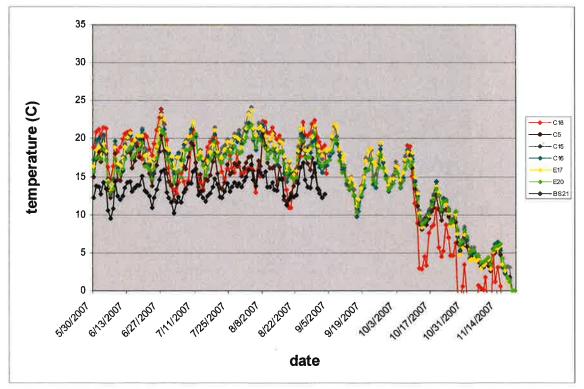


Figure 6: Minimum daily temperature for Clythe Creek (sites C18 to BS21 are listed upstream to downstream).

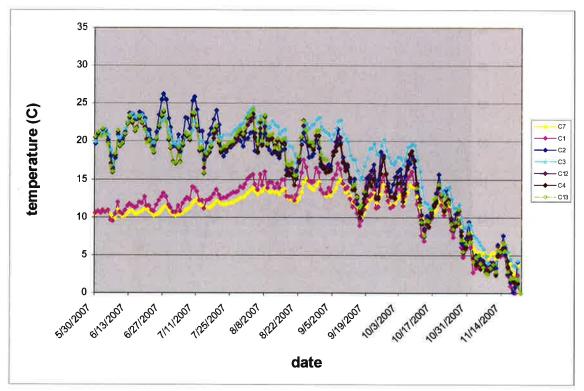


Figure 7: Average daily temperature for Clythe Creek (sites C7 to C13 are listed upstream to downstream).

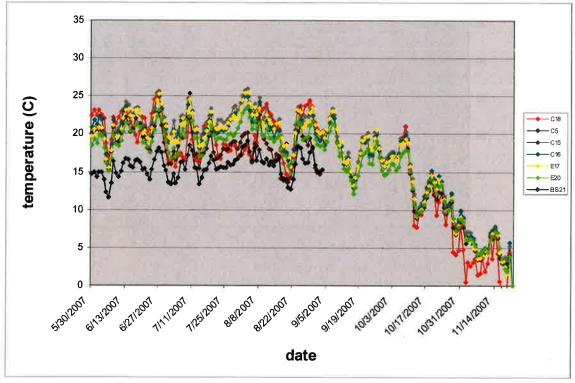


Figure 8: Average daily temperature for Clythe Creek (sites C18 to BS21 are listed upstream to downstream).

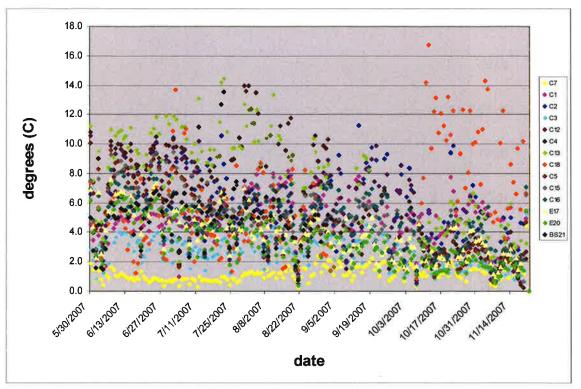


Figure 9: Daily range in temperature at all sites.

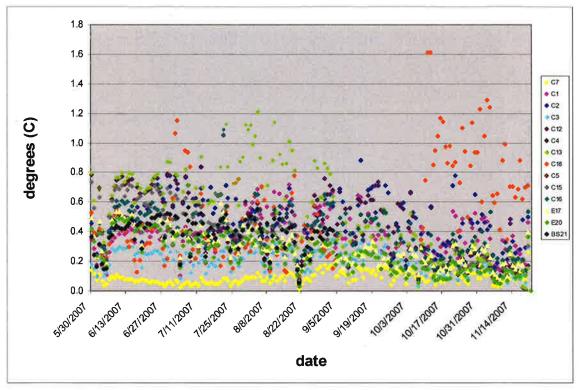


Figure 10: Average hourly rate of change in temperature per day at all sites

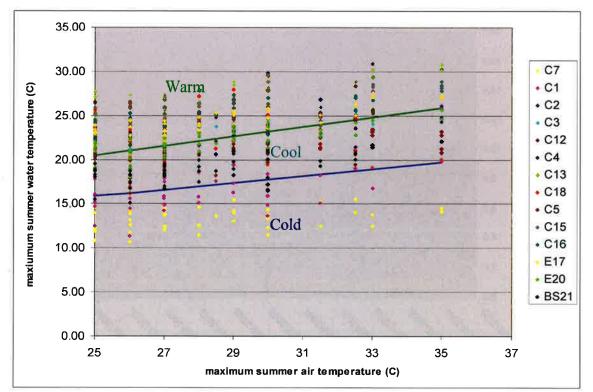


Figure 11: Stream classification of all sites (format from Stoneman and Jones 1996). Sites plotted below blue line classify as cold water, between blue and green classified as cool water and above green classified as warm water sites.

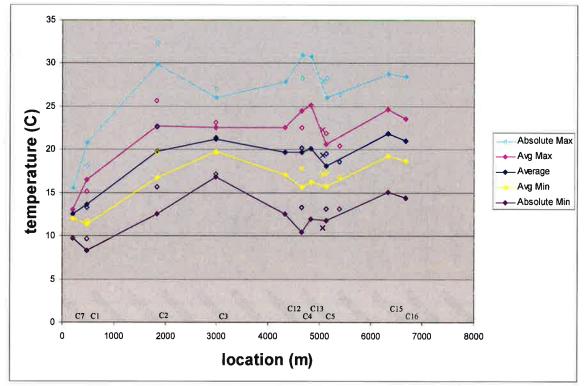


Figure 12: Longitudinal chart showing change in temperature from upstream to downstream during peak summer months (July and August). Solid points represent 2007 data, hollow points represent 2006, 'X' represent the stormwater outflow (C18).

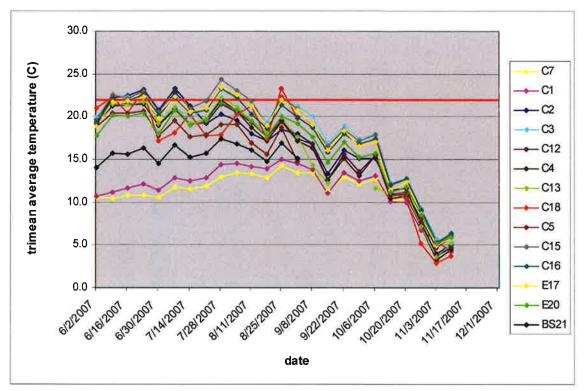


Figure 13: Trimean average temperature for Clythe Creek (sites are listed upstream to downstream). The red line marks 22°C.

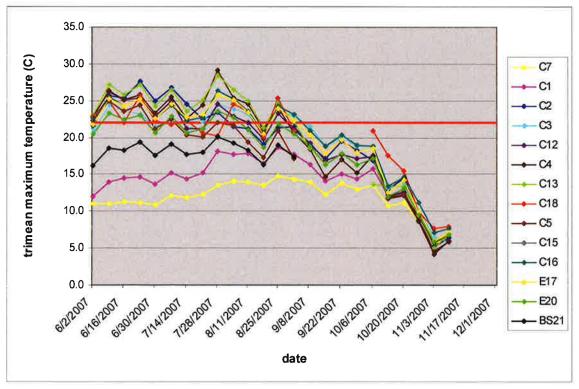


Figure 14: Trimean maximum temperature for Clythe Creek (sites are listed upstream to downstream). The red line marks 22°C.

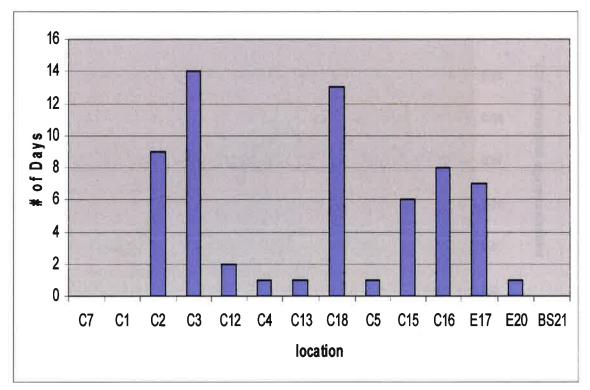
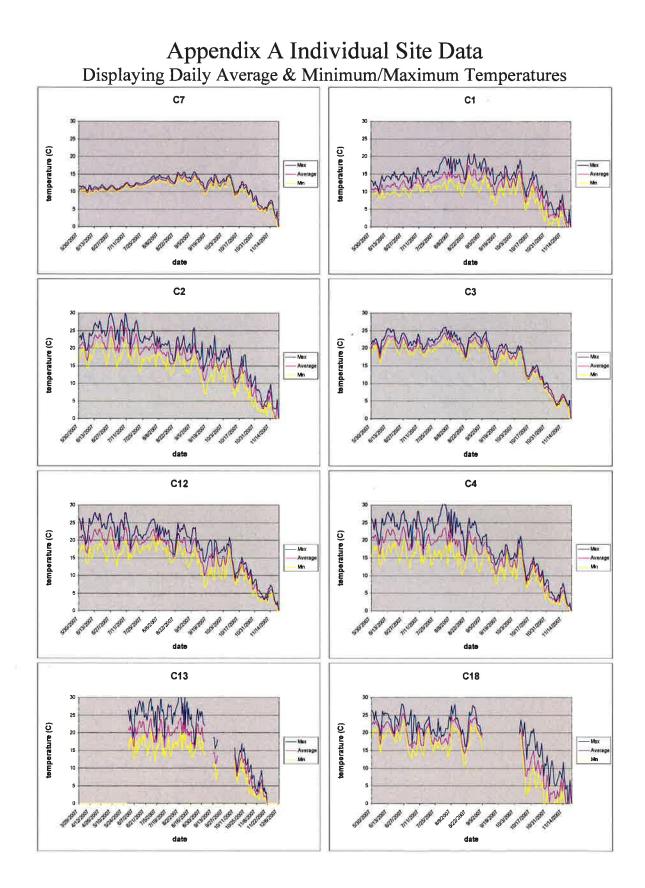
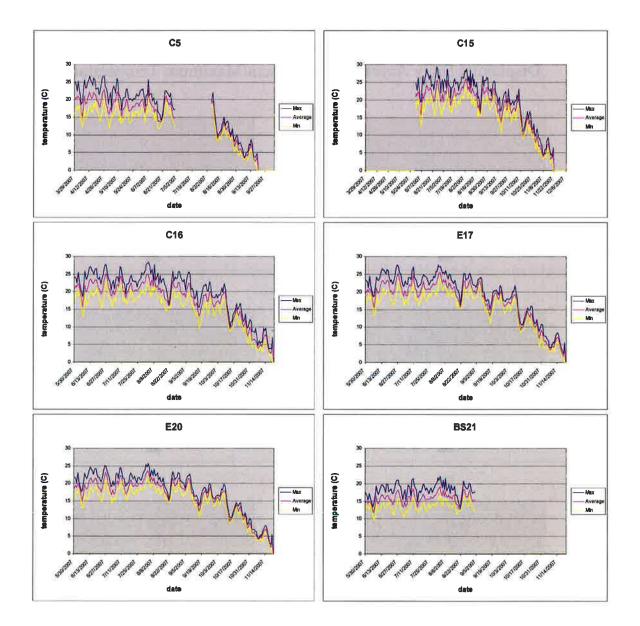


Figure 15: Number of days where temperatures were sustained over 19°C for a 24h period.

Implications


There is a great deal of variability in temperature trends throughout the length of Clythe Creek. This is likely due to the large number of online ponds combined with multiple areas of groundwater seepage. The most significant increase in water temperatures is between site C1 to site C2. This is likely due to the online pond created by a weir located at Jones Baseline. Water temperatures decrease between Jones Baseline (C2) and Watson Road North (C4), likely as a result of groundwater inputs, which is consistent with observations of numerous groundwater seeps in this reach of the creek in 2006. The effects of the warm water from the storm water management pond (C18) on minimum temperatures of the creek is seasonal. However, the degree of cooling in this area (between C13 and C5) could be greater if not for the effects of the stormwater management pond.


The presence of groundwater inputs in the upper reaches of Clythe Creek provide great potential for coldwater restoration. With the removal of the impoundment upstream of Jones Baseline, the increase in water flow combined with coldwater inputs will likely mitigate general warming of the system allowing this creek to be cooled from top to bottom. This mitigation could potentially return this creek to a coldwater classification capable of sustaining brook trout.

It is strongly recommended that an attempt is made to contact landowners and neighbours of Clythe Creek and discuss the implications of online ponds and the benefits of removal. Mitigation of these impoundments should be prioritized with impoundments further upstream holding the highest priority. Monitoring of any physical changes to the creek will aid in our understanding of the degree of benefit to this system and will further aid in the understanding of temperature regimes downstream.

It is recommended that water quality (chemistry) information at strategic locations be collected to help assess the influence of land use activities, specifically, the impacts of storm water management ponds in the developing lower portion of the watershed. Measurements should include variables such as turbidity, conductivity, pH and dissolved oxygen. Based on these data it would be beneficial to survey the fish community composition in selected sections of the creek to identify any remnant coldwater communities. Anicdotal evidence from preliminary surveying by the Speed Valley Chapter of Trout Unlimited Canada in 2007 revealed the presence of central mudminnow, pearl dace, brook stickleback, northern redbelly dace and sculpin in Clythe Creek. Brook stickleback and sculpin are commonly found in the same habitats as brook trout and can be considered indicators of aquatic health. Future surveys should include reaches upstream of Wellington Road 29 and between Highway 7 and Watson Road North. These are the most likely areas to support remnant populations of coldwater species such as brook trout and these results should be compared to historical surveys to assess changes in community composition.

Clythe Creek holds great potential for restoration. The available groundwater and gradient allow for cooling downstream which will mitigate some of the warming caused by impoundments. Increasing water flow by removing impoundments will increase this mitigation potentially creating coldwater habitats.

References

- Baldwin, N.S. 1948. Food Consumption and Growth of Brook Trout at Different Temperatures. University of Toronto.
- Beak International Incorporated and Aquafor Beech Limited, 1999. Eramosa-Blue Springs Watershed Study Report - Parts 1 and 2: Watershed Report Card and Watershed Goals and Objectives.
- Beak International Incorporated et al., 1999. Eramosa-Blue Springs Watershed Study Report - Part 3: Recommended Watershed Plan and Implementation Strategy.
- Cherry, D., Dickson, K., and Cairns, J. 1975. Temperatures selected and avoided by fish at various acclimation temperatures. Journal of the Fisheries Research Board of Canada 32: 458-491.
- Creaser, C.W. 1930. Relative importance of hydrogen-ion concentration, temperature, dissolved oxygen, and carbon-dioxide tension, on habitat selection by brook-trout. Ecology 11: 246-262.
- Dwyer, W.P., Piper, R.G., and Smith, C.E. 1983. Brook trout growth efficiency as affected by temperature. Progressive Fish-Culturist 45: 161-163.
- Ferguson, R. G. The preferred temperature of fish and their midsummer distribution in temperate lakes and streams. Journal of Fisheries Research Board of Canada 15, 607-624. 1958.
- Graham, J. M. Some effects of temperature and oxygen pressure on the metabolism and activity of the speckled trout, *Salvelinus fontinalis*. Canadian Journal of Res. 27, 270-288. 1949.
- Grande, M. and Andersen, S. 1991. Critical thermal maxima for young salmonids. Journal of Freshwater Ecology 6: 275-279.

Grand River Conservation Authority, 1953. Speed Valley Report.

- Heggenes, J. and Traaen, T. 1988. Downstream migration and critical water velocities in stream channels for fry of four salmonid species. Journal of Fish Biology 32: 717-727.
- Hokanson, K., McCormick, J., Jones, B., and Tucker, J. 1973. Thermal requirements for maturation, spawning, and embryo survival of the brook trout, *Salvelinus fontinalis*. Journal of the Fisheries Research Board of Canada 30: 975-984.
- MacCrimmon, H. and Campbell, J. 1969. World distribution of brook trout, *Salvelinus fontinalis*. Journal of the Fisheries Research Board of Canada 26: 1699-1725.

- Meisner, J.D. 1990. Potential loss of thermal habitat for brook trout, due to climatic warming, in two southern Ontario streams. Transactions of the American Fisheries Society 119: 282-291.
- Power, G. 1980. The brook charr, *Salvelinus fontinalis*. *In* Charrs: salmonid fishes of the genus *Salvelinus*. Kluwer Boston Inc., Boston, U.S.A. pp. 141-203.
- Powers, E.B. 1929. Fresh water fish studies I. Ecology 10: 97-111.
- Ricker, W. E. An ecological classification of certain Ontario streams. Ontario Fisheries Research Laboratory 49, 7-114. 1934.
- Stoneman, C. L. Habitat Suitability Assessment Models for Southern Ontario Trout Streams. Model Development and Evaluation. Canadian Manuscript Report on Fisheries and Aquatic Sciences. 1996. Fisheries and Oceans Canada and Ontario Ministry of Natural Resources.
- Tang, M. and Boisclair, D. 1995. Relationship between respiration rate of juvenile brook trout (Salvelinus fontinalis), water temperature, and swimming characteristics. Canadian Journal of Fisheries and Aquatic Sciences 52: 2138-2145.
- Todd, A. and D'Amelio, S. 2006. Clythe Creek, Guelph Ontario 2006 Temperature Report. Trout Unlimited Canada Technical Report No. ON-019.
- Witzel, L. D. and MacCrimmon, H. R. Redd-site selection by brook trout and brown trout in southwestern Ontario streams. Transactions of the American Fisheries Society 112[6], 760-771. 1983.

DRAFT

YORK ROAD ENVIRONMENTAL STUDY DESIGN GEOMORPHIC BACKGROUND REVIEW TECHNICAL MEMORANDUM #1

> Report Prepared for: AMEC FOSTER WHEELER

Prepared by: PARISH AQUATIC SERVICES a Division of Matrix Solutions Inc.

February 2016 Mississauga, Ontario

Suite 200, 2500 Meadowpine Blvd. Mississauga, ON, Canada L5N 6C4 P 905.877.9531 F 905.877.4143 www.parishgeomorphic.com

DRAFT

YORK ROAD ENVIRONMENTAL STUDY DESIGN GEOMORPHIC BACKGROUND REVIEW TECHNICAL MEMORANDUM #1

Report prepared for AMEC Foster Wheeler, February 2016

Jennifer Henshaw, M.Sc. Fluvial Geomorphology Specialist <u>reviewed by</u> John Parish, P.Geo. Principal Geomorphologist

DISCLAIMER

We certify that this report is accurate and complete and accords with the information available during the site investigation. Information obtained during the site investigation or provided by third parties is believed to be accurate but is not guaranteed. We have exercised reasonable skill, care and diligence in assessing the information obtained during the preparation of this report.

This report was prepared for AMEC Foster Wheeler. The report may not be relied upon by any other person or entity without our written consent and that of AMEC Foster Wheeler. Any uses of this report by a third party, or any reliance on decisions made based on it, are the responsibility of that party. We are not responsible for damages or injuries incurred by any third party, as a result of decisions made or actions taken based on this report.

TABLE OF CONTENTS

1	INTROD	OUCTION	I	1
	1.1	Study A	rea	1
2	PREVIO	US STU	DIES	3
3	CLYTHE	CREEK	CHANNEL CHARACTERIZATION	8
	3.1	Historio	al Assessment	8
	3.2	Reach E	Breaks	8
	3.3	Existing	Site Conditions	9
		3.3.1	Reach C9A	9
		3.3.2	Reach C9B	10
		3.3.3	Geomorphic Conditions and Rapid Geomorphic Assessments	10
4	NEXT S	TEPS		12
5	REFERE	NCES		12

LIST OF FIGURES

FIGURE 1	Clythe Creek Subwatershed 2	
FIGURE 2	Clythe Creek Reach Breaks 4	

LIST OF TABLES

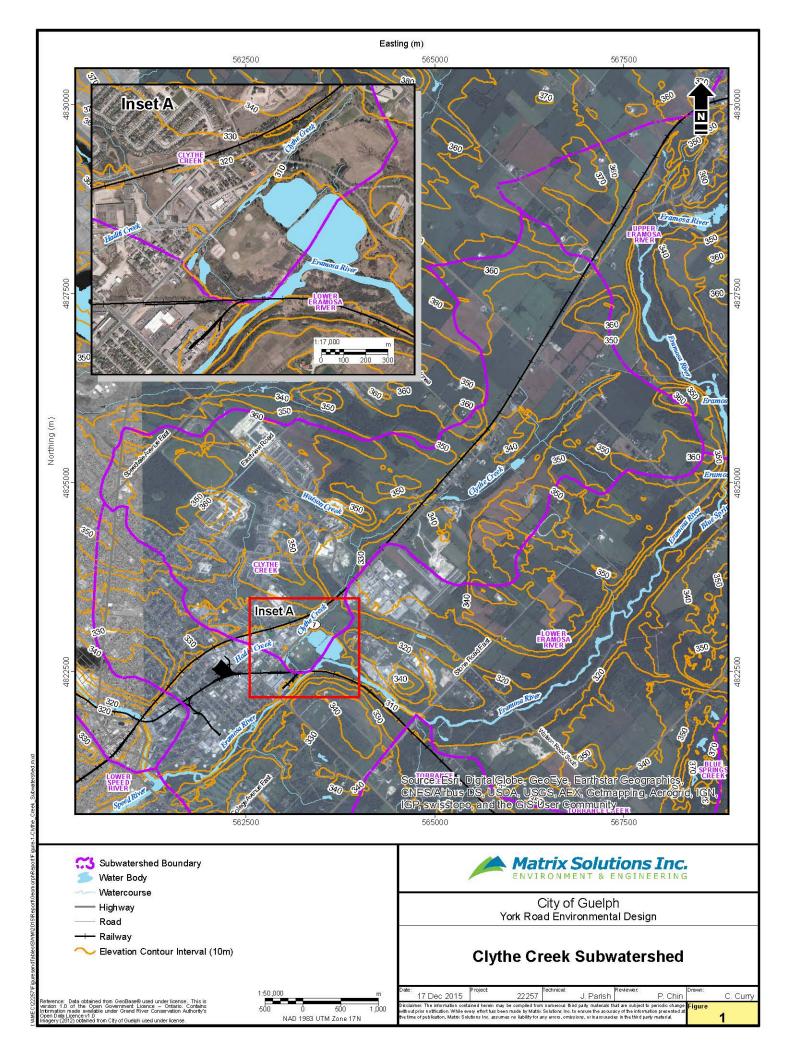
TABLE 1	Clythe Creek Subwatershed Reach Delineations	. 5
TABLE 2	Rapid Geomorphic Assessment Classification	11
TABLE 3	Summary of the 2015 Rapid Geomorphic Assessment Scores for the West Credit River	
	through the Belfountain Dam Complex	11

APPENDICES

APPENDIX A	Site Photographs
APPENDIX A	Site Photographs

1 INTRODUCTION

PARISH Aquatic Services, a division of Matrix Solutions Inc., has been retained by AMEC Foster Wheeler to provide support in the form of fluvial geomorphic expertise and guidance with regards to the York Road environmental study design in which project objectives are intended to assist with the implementation of the recommendations stemming from the 2007 York Road improvements class environmental assessment (EA; NRSI 2006). Specifically, the 2007 EA recommended that York Road be widened from Victoria Road to the East City Limits from its existing 2-lane footprint to a 4-lane roadway with a 1.5 m bicycle lane in each direction and associated curbs, sidewalks, and gutters. As a result of the proposed road widening, there will be impacts to the Clythe Creek watercourse that flows adjacent to York Road between Watson Parkway and Industrial Avenue. Due to these impacts, recommendations for the channel included the following:


- extension of the existing Clythe Creek culvert crossing of York Road
- relocation of approximately 135 m of Clythe Creek to accommodate the proposed road widening
- implementation of riparian plantings to separate the widened roadway from the relocated Clythe Creek channel

1.1 Study Area

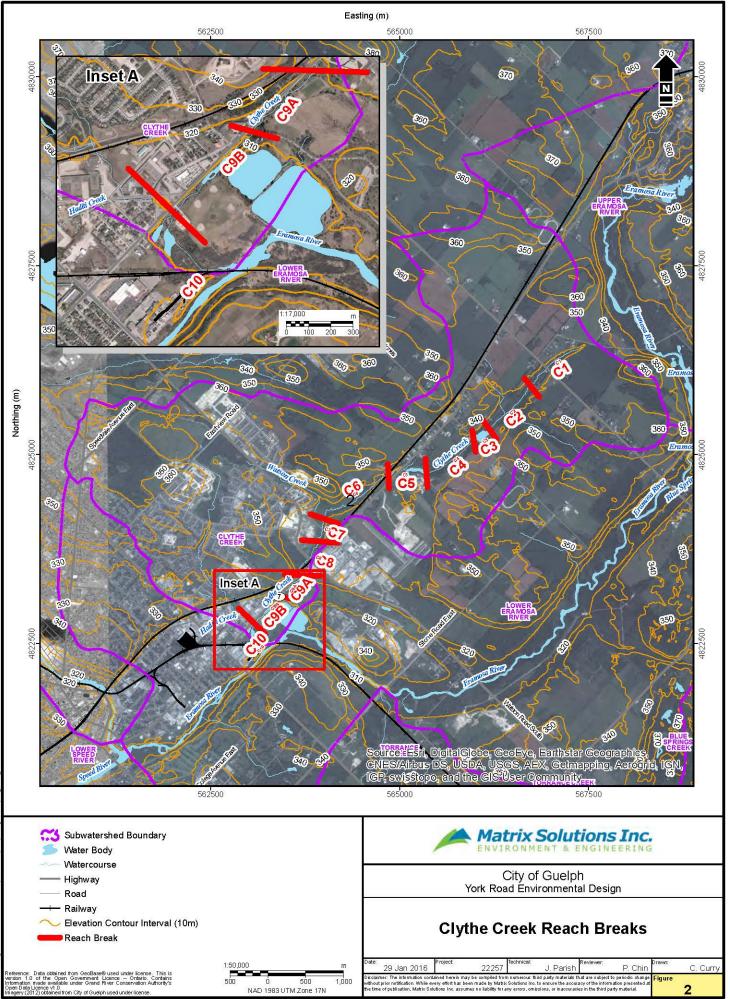
Located within the City of Guelph, the local study area of Clythe Creek is situated south of York Road between Watson Parkway and Industrial Avenue. **Figure 1** depicts the Clythe Creek subwatershed and the study area.

The Clythe Creek subwatershed is composed of Clythe Creek and its two tributaries, Watson Creek and Hadati Creek. Clythe Creek joins with the Eramosa River south of York Road and east of Victoria Road. The Clythe Creek subwatershed is approximately a 21 km² drainage area dominated by both agricultural and urban land uses. Clythe Creek is considered a cold water stream with a band of wetland vegetation found along its length. The abundance of groundwater near or at the ground surface in this watershed plays a key role in influencing the composition and distribution of vegetation within the watershed.

The study area of Clythe Creek is located within lands associated with the former Guelph Correctional Centre (GCC) in operation from 1910 to 2001, and which is currently owned by Infrastructure Ontario. The close proximity to the GCC facility buildings has had a large impact on the overall fluvial form and functioning of Clythe Creek within the study area, as numerous culverts, bridges, dams, and weirs have been installed along the channel by inmates of the facility. Additionally, two on-line ponds have been created with drainage directly into Clythe Creek as well as the Eramosa River.

2 PREVIOUS STUDIES

Before initiation of the geomorphic field assessment, PARISH conducted a review of background reports and previous studies to determine any relevant information applicable to this specific study. This background review identified reaches that have been delineated and studied by others such that redundancy would not occur. Watershed-based studies (e.g., Eramosa River and Clythe Creek) on the state of the stream's health have been completed during the last few decades. Understanding the available geomorphic information, areas where updates are required, and gaps to be filled will be valid.


PARISH reviewed the following studies for background information pertaining to the fluvial geomorphic aspects of Clythe Creek. Overall, no study was able to provide a detailed characterization of the entire subwatershed; however, site-specific information on channel dimensions and characteristics were obtained for several locations along the channel and in relation to the current study area adjacent to York Road. Several conceptual channel designs have also been created for Clythe Creek as a result of the proposed York Road widening.

Clythe Creek Subwatershed Overview (Ecologistics Limited 1998)

This report, and environmental studies contained within, was commissioned as a result of numerous development proposals within the subwatershed, including residential housing, support services, and industrial facilities. The subwatershed study contains a complete overview of existing conditions in the Clythe Creek subwatershed, including land use, soils and topography, groundwater resources, upland vegetation patterns, wetlands, wildlife, rare species, and aquatic resources.

The study identifies ten reaches of Clythe Creek (**Figure 2**), from its headwaters east of Regional Road 29 to its confluence with the Eramosa River. Reach descriptions detail bankfull dimensions, substrate type, riparian conditions, and overall channel stability (**Table 1**).

Study objectives were to provide direction to future land use decisions in the subwatershed in order to maintain and enhance (where feasible) wetlands, watercourses, and terrestrial resources, and to maintain and enhance hydrogeological characteristics of the area.

TABLE 1 Clythe Creek Subwatershed Reach Delineations

Reach Characteristics		Clythe Creek									
Reach	Reach Characteristics		C2	C3	C4	C5	C6	C7	C8	С9	C10
Bankfull Width	The width (m) of the channel at its fullest capacity	1.1	Not accessible	30	1.3	Ponded areas ~50; channelized areas ~5	3	1.6	2.4	1 to 5	10 to 12
Depth of Channel	The depth (m) of the channel at its deepest point	0.10 to 0.12		<2	0.05 to 0.10	Ponded areas >2; channelized areas ~0.25	0.25	0.08 to 0.10	0.24	0.5	0.5
Substrate Type	The characteristics of the material found on the streambed	Organic		Organic	Organic	Silt/organic	Organic	Gravel/organic	Silt/organic	Gravel and rubble with thin organic layer	Silt/organic
Cover	The type and amount of vegetation found overhanging the stream	Dense jewelweed, cattails, and occasional cedar		Mostly open water with cattails	Mainly cattails with scattered cedars	Herbaceous; lily pads around perimeter; red osier dogwood; cedars	Cattails, jewelweed, reed canary grass, and areas of dense shrub	Herbaceous; open meadow with small poplar/cedar stand	Dense shrub understory with willow trees	Mowed lawn	Dense shrub species; mixed herbaceous and occasional willow trees
Width of Riparian Zone	The width (m) of the naturally vegetated areas adjacent to the creek	18 to 40	120	90	115	40	40 to 80	80	50	None	1 to 120
Channel Stability	Channel and bank characteristics that indicate stability of channel, including erosion, bank failure, etc.	Stable		Stable	Stable; bank heights are low to nil	Stable	Stable	Stable	Stable; however, some undercutting is evident	Stable	Generally stable but with some evidence of undercutting
Number of Bridge or Culvert Crossings	Number of breaks in channel continuity from bridges, culverts, and dams	1	0	0	0	3	1	0	0	13 culverts, artificial waterfalls, and trickle-downs	3
Sinuosity	Length of channel compared to linear distance from upstream to downstream limits of reach	1.32	1.09	1.33	1.1	1.1	1.27	1.25	1.08	1.43	1.3
Other Comments		Cool, clear water		Scattered slumps present	Open marsh; creek becomes braided through marsh	Overflowing outlet in first pond; water very still; landscaped areas	Open marsh; channel is braided in areas	Meanders through open meadow	Good shading; water is cool as is crosses under Canadian National Railway berm	Occasional landscaped areas; a few storm outfalls	Water very cloudy and slow flowing; lily pads and margins of confluence

~ approximately

Eramosa-Blue Springs Watershed Study Report (Beak International and Aquafor Beech 1999)

This study was initiated to address several comprehensive watershed-scale issues that remained outstanding from the Eramosa River-Blue Springs Creek Linear Corridor Initiative (1995). Clythe Creek is the largest tributary of the Lower Eramosa River. Within the watershed, channel and streambank erosion is not significant and is limited to localized areas along a number of tributaries where alteration has occurred as a result of livestock access, municipal drainage practices, bridge construction, channel improvement, on-line ponds, and sources of high sediment delivery. Lack of erosion was assessed to be the result of hummocky topography, extensive wetlands, and healthy streamside vegetation, as well as stable stream morphology.

General subwatershed descriptions contained within the study report reveal that Clythe Creek has been ranked as the most impacted tributary within the watershed. The channel has been extensively impacted by both rural and urban land uses, and the overall health of the channel, in terms of fluvial form and function as well as ecological conditioning, is under stress from species introduction, channel alterations, and riparian vegetation loss. Several areas of medium to high sediment delivery potential were noted, as well as numerous important recharge areas.

Assessment and Remedial Activities for Clythe Creek (UW 2007)

Prompted by the widening of York Road, which will conflict with the current alignment of Clythe Creek, this study was conducted by University of Waterloo fourth-year engineering students for Trout Unlimited Canada. The study area is approximately 1 km in length and runs parallel, along the south side of York Road between Watson Parkway and Elizabeth Street in Guelph, Ontario.

The objective of the study was to determine appropriate remedial activities through the selection of a preferred alternative. Criteria of the considered alternatives included improving the thermal regime of the stream, maintaining and promoting water quality suitable for cold water biota, and retaining the current aesthetic and recreational properties of the study area. The preferred alternative selected was the realignment of the entire study reach.

The study develops a further understanding of current channel conditions south of York Road through the assessments of channel morphology, sediment sampling, and water quality.

Rehabilitation of Clythe Creek (UW 2008)

Upon the selection of the preferred alternative from the 2007 Phase I report, which included the realignment of the entire study reach to improve the fluvial form and functioning and aquatic habitat within the channel, a conceptual channel design was established for Clythe Creek south of York Road between Watson Parkway and Elizabeth Street in Guelph. The Phase II deliverables include the proposed channel geometry and alignment, a comparison between the current and proposed channel alignments, a proposed construction schedule, and a cost estimate.

"Groundwater-Surface Water Interactions and Thermal Regime in Clythe Creek, Guelph, Ontario: Threats and Opportunities for Restoration." (Ashworth 2012)

Through the investigation of the groundwater-surface water interaction and thermal regime of Clythe Creek, channel morphology was recorded through a series of monumented cross-sections between Watson Parkway and Watson Road.

Conservation Plan for the Guelph Correctional Centre Heritage Place (ORC 2009)

The GCC has been identified as a provincially significant property as a result of a comprehensive study of Ontario's correctional facilities undertaken by the Ontario Realty Corporation in 2006. Thirteen buildings at the GCC (which closed as a correctional centre in 2001) were identified for their heritage value, chosen either because they uniquely represent the GCC as a correctional centre of heritage value, or because they support the heritage values of the correctional centre in a meaningful way. The associated cultural landscape was also identified as a significant heritage resource.

Clythe Creek runs parallel to the GCC heritage lands, south of York Road, specifically flowing through the ornamental landscape of the GCC. The ornamental landscape consists of the park-like landscape between York Road and the GCC administration building, wrapping around the west façade of the detention complex, and stretching from the former farmlands on the east side of the property west to the banks of the Eramosa River. It includes broad lawns, ornamental ponds and watercourses, winding drives, a circular vehicle turn-about, stone walls and remnants of stone walls, ornamental bridges, lines of mature trees, and specimen plantings.

Alterations and realignment of Clythe Creek within the study area must take into consideration the impact to heritage features associated with the GCC.

Stormwater Management Master Plan, City of Guelf (AMEC 2012)

A desktop assessment with and scoped field activities was undertaken as part of the fluvial geomorphic component of the stormwater management master plan to determine the relative conditions of several watercourses within the City of Guelph. Within this report, fluvial geomorphic investigations were conducted along both Hadati Creek and Watson Creek, which are tributaries to Clythe Creek. Analysis from the investigation identified the relative stability of subject watercourse reaches, as well as zones of potentially increased stream power. Hadati Creek, upstream from the railway line was identified as being highly sensitive to the channel processes, as well as being an area of increased stream power. Both Watson Creek and Clythe Creek (upstream from the railway line were identified as being stable to moderately sensitive reaches with lower stream power.

Guelph Correctional Centre, Natural Heritage Assessment (NRSI 2013)

The Natural Heritage Assessment (NHA) focused on identifying and delineating natural heritage features (e.g., wetland communities, candidate significant wildlife habitat, aquatic habitat) within the GCC property and developing a rehabilitation concept for Clythe Creek within the subject property.

Specifically, the NHA identified terrestrial and aquatic features within the landscape, such as creeks, tributaries, drainage areas, wetlands, forested communities, significant wildlife habitat, and suitable habitat for species at risk. The report provides higher level documentation of the existing natural environment conditions and an analysis of the significance and sensitivity of the natural features. Appropriate buffers are recommended to facilitate an assessment of opportunities and constraints on the property for future redevelopment concepts.

The current proposal to widen York Road will have an impact on Clythe Creek; specifically, it was identified that approximately 135 m of Clythe Creek will need to be relocated within the GCC lands due to a conflict with the proposed road works. Within the report, opportunities were assessed, and a preliminary development concept plan, including Clythe Creek channel realignment and associated 30 m buffer through the GCC lands, was created.

3 CLYTHE CREEK CHANNEL CHARACTERIZATION

The geomorphic characterization of Clythe Creek focused on a desktop analysis of existing conditions. The analysis optimized the existing available information obtained through the review of previous studies for the subwatershed, including existing subwatershed, stormwater management and drainage studies, geographic information, and aerial photography. A synoptic site visit was conducted on December 22, 2015, to clarify existing conditions and further identify where gaps exist in the background data. A photographic inventory of the site visit is displayed in **Appendix A**.

3.1 Historical Assessment

A historical aerial image from 1930 was obtained for the study area and was used to infer past and present land uses within the area. Within the image, several features that are consistent with current land use are present, including the GCC (buildings and access roads), York Road, railway alignments, and the Eramosa River. Two aesthetic ponds are located on opposite sides of the correctional facility main driveway, and several small drainage features, originating to the west of the correctional facility, are present and discharge directly into the Eramosa River. Clythe Creek flows adjacent to York Road, becoming wider with multiple flow pathways in the downstream direction. Both the north and south ponds are absent from the image.

3.2 Reach Breaks

Reaches are lengths of channel (typically 200 m to 2 km) that display similarity with respect to valley setting, planform, floodplain materials, and land-use/cover. Reach length will vary with channel scale since the morphology of low-order watercourses will vary over a smaller distance than those of higher-order watercourses. At the reach scale, characteristics of the stream corridor exert a direct influence on channel form, function, and processes.

Within the Clythe Creek subwatershed overview (Ecologistics Limited 1997), ten reaches were identified along the watercourse based on habitat characteristics. The reaches are named based on position along the watercourse chainage, with reach C1 located furthest upstream within the headwaters and reach C10 located furthest downstream extending to the confluence with the Eramosa River. The Clythe Creek reach delineation is displayed on **Figure 2**; reach characteristics are displayed in **Table 1**.

The local study area is located within Reach 9, which corresponds with the Clythe Creek channel corridor downstream from York Road to the confluence with Hadati Creek. The subwatershed study describes this reach as having bankfull width of 1 to 5 m wide and bankfull depths of 0.5 m. Channel substrate is described as gravel and rubble with a thin organic layer. Riparian cover is mowed lawn with landscaping, numerous artificial waterfalls and weirs to control channel gradient, and several culverts and storm outfalls adding discharge.

Further refinement of this previous delineation is warranted for the current study due to the changes in channel morphology and planform that exist. For the purposes of the existing study, Reach 9A represents the upstream segment, extending for approximately 445 m downstream from York Road to the historical stone arch bridge that is the main access to the former reformatory facilities. Reach 9B represents the downstream segment, extending from the historical stone arch bridge 500 m downstream to the confluence with Hadati Creek. The extent of these reaches was walked as part of a synoptic level site assessment conducted on December 22, 2015.

3.3 Existing Site Conditions

PARISH performed site reconnaissance on December 22, 2015. The intent of the visit was to observe existing conditions to better guide the development of detailed field work and ultimately the conceptual channel design. A photographic inventory has been compiled from the site visit and is displayed in **Appendix A**.

3.3.1 Reach C9A

Downstream from the York Road crossing, Reach C9A is a moderately sinuous to straight channel with numerous grade control weirs, waterfalls, and culverts controlling gradient and the downstream movement of water. Bankfull dimensions were measured at 2 to 3 m wide and 0.4 to 0.5 m deep. Throughout most of the reach, water was elevated nearly to the bankfull level; this is associated with backwatering behind weirs. Average channel substrate was undetermined; however, the water was generally turbid, and bank materials are a sandy-clay mix. Lack of riffle and pool bed morphology is also likely a result of the numerous weirs impeding the natural function of the channel. A tributary enters Clythe Creek approximately 300 m downstream from the York Road crossing; minimal baseflow contributions were observed at the time of the site visit.

3.3.2 Reach C9B

Downstream from the historical stone arch bridge, Reach C9B is a predominantly straight, low-gradient channel that has been over-widened due improper drainage throughout the reach. Two engineered decorative islands are located within the reach. Bankfull dimensions were measured to be 15 to 18 m in ponded sections and 4 to 5 m at pinch points associated with pedestrian crossings. Bankfull depth was observed to be 0.5 m; however, it is expected that this will increase within pools. Channel banks are lines with angular stone throughout the reach. Bed sediment appears to be mainly fine-grained sands with limited gravels and cobbles. Sediment deposits are also observed at the outlet of storm drains, which brig surface runoff from the north side of York Road.

A previously dug pond (northern reformatory pond) outlets to the channel approximately 215 m downstream from the start of the reach; however, due to the overall low gradient of the area, water is largely stagnant and not flowing through the pond outlet or Clythe Creek. Flow remains stagnant throughout most of the reach; velocity is only locally increased at weir and waterfall locations. Along the reach, there are three pedestrian bridge crossings and one driveway access. The pedestrian crossings are all single-span bridges not suitable for vehicular travel, whereas the driveway access crosses the creek channel with two corrugated steel pipe culverts.

3.3.3 Geomorphic Conditions and Rapid Geomorphic Assessments

A detailed geomorphic investigation has been completed to provide insight into existing conditions of the Clythe Creek study area. Review of topographic mapping and aerial photography, as well as preliminary field reconnaissance conducted on December 22, 2015, suggest that the channel segment of interest (i.e., between the York Road crossing and the Hadati Creek confluence) is in fact two geomorphic reaches with distinct parameters such as channel geometry, floodplain access and characteristics, adjacent land use, and valley setting. The extents of the reach and local study area where works will take place are illustrated on **Figure 2**.

Preliminary geomorphic assessments were conducted to characterize the current geomorphic state of Clythe Creek using background information, field reconnaissance, and the Rapid Geomorphic Assessment (RGA) protocol. The RGA protocol was designed by the Ontario Ministry of Environment (1999) to assess urban stream channels. It is a qualitative technique based on the presence and (or) absence of key indicators of channel instability, such as exposed tree roots, bank failure, excessive deposition, etc. The various indicators are grouped into four categories representing specific geomorphic process: 1) Aggradation, 2) Degradation, 3) Channel Widening, and 4) Planimetric Form Adjustment. Over the course of the field reconnaissance, the existing geomorphic conditions of the reach are noted, and the presence or absence of the specific geomorphic indicators is documented. Upon completion of the field inspection, the indicators are tallied within each category, and the subsequent results are used to calculate an overall reach stability index value. This index value corresponds to one of three stability classes representing the relative degree of channel adjustment and (or) sensitivity to altered sediment and flow regimes (**Table 2**). While the RGA is a valuable tool to assess

watercourse conditions, many fluvial processes are natural, and instability does not strictly indicate impacts of urban development.

Index	Classification	Interpretation
≤0.20	In Regime or Stable (Least Sensitive)	The channel morphology is within a range of variance for streams of similar hydrographic characteristics - evidence of instability is isolated or associated with normal river meander propagation processes. Channels are in good condition with minor adjustments that do not impact the function of the watercourse.
0.21 to 0.40	Transitional/Stressed (Moderately Sensitive)	Channel morphology is within the range of variance for streams of similar hydrographic characteristics, but the evidence of instability is frequent. Significant channel adjustments have occurred, and additional adjustment may occur.
≥0.41	In Adjustment (Most Sensitive)	Channel morphology is not within the range of variance, and evidence of instability is wide spread. Significant channel adjustments have occurred and are expected to continue.

 TABLE 2
 Rapid Geomorphic Assessment Classification

Results of the field assessment, including RGA classification and channel parameters, are summarized in **Table 3** below.

TABLE 3Summary of the 2015 Rapid Geomorphic Assessment Scores for the West Credit River
through the Belfountain Dam Complex

Clythe Creek Study Reach		Fa				
	Aggradation	Degradation	Widening	Planimetric Adjustment	Stability Index	Condition
9A	0.29	0.2	0.4	0.29	0.30	Transitional
9B	0.4	0	0.3	0.43	0.28	Transitional

Within reach 9A, the dominant process contributing to fluvial form and function of the channel was channel widening, with a Factor Value of 0.4. Evidence of widening was observed in fallen trees, exposed roots, outflanked concrete walls, and fracture lines along the banks at outer meander bends. Evidence of aggradation and planimetric form adjustment was also observed with siltation in pools, poor sorting of bed material, lack of riffle-pool morphology, and absence of bar forms.

Within reach 9B, the dominant processes were planimetric adjustment and aggradation. High amounts of siltation and deposition, embedded cobbles, and overbank deposition contributed to the scoring.

Both study reaches are classified as transitional, or stressed, indicating that channel morphology is within the range of variance for streams of similar characteristics; however, evidence of instability is frequent; both study reaches of Clythe Creek are considered moderately sensitive to future adjustments.

4 NEXT STEPS

During the spring of 2016, a detailed geomorphic investigation will be conducted within the Clythe Creek study area, including a total station survey of the study area extents (profile and cross-sections), inventory of weirs and waterfall structures, spot flow measurements at select locations along the channel, and rapid assessment and characterization of Hadati Creek. Results of the field work will be analyzed and reported within the environmental impact Study document.

5 REFERENCES

- Ahsworth H.E. 2012. "Groundwater-Surface Water Interactions and Thermal Regime in Clythe Creek, Guelph, Ontario: Threats and Opportunities for Restoration." Master of Applied Science in Engineering thesis. University of Guelf. Guelf, Ontario. May 2012.
- AMEC Environment & Infrastructure (AMEC). 2012. *Stormwater Management Master Plan, City of Guelf*. Report prepared for the City of Guelf. Burlington, Ontario. February 2012.
- Beak International Incorporated (Beak International) and Aquafor Beech Limited (Aquafor Beech). 1999. *Eramosa-Blue Springs Watershed Study Report*. Report prepared for Eramosa-Blue Springs Steering Committee. September 1999.
- Ecologistics Limited. 1998. *Clythe Creek Subwatershed Overview*. Report prepared for Metrus Developments Inc. Waterloo, Ontario. November 1997. Updated April 1998.
- Natural Resource Solutions Inc. (NRSI). 2013. *Guelph Correctional Centre, Natural Heritage Assessment*. Report prepared for Infrastructure Ontario. Waterloo, Ontario. January 2013.
- Natural Resource Solutions Inc. (NRSI). 2006. "Environmental Input to the EA for the Widening of York Road, Victoria Road to the East City Limit, Guelf, Ontario." Draft report prepared for the City of Guelf. September 2006.
- Ontario Realty Corporation (ORC). 2009. *Conservation Plan for the Guelph Correctional Centre Heritage Place*. May 2009.
- University of Waterloo (UW). 2008. *Rehabilitation of Clythe Creek, Phase II Design Report, York Road between Watson Parkway and Elizabeth Street, Speed Valley Watershed, Guelf, Ontario.* Report prepared for Trout Unlimited Canada. Waterloo, Ontario. March 2008.
- University of Waterloo (UW). 2007. Assessment and Remedial Activities for Clythe Creek, Phase I Report, York Road between Watson Parkway and Elizabeth Street, Speed Valley Watershed, Guelf, Ontario. Report prepared for Trout Unlimited Canada. Waterloo, Ontario. November 2007.

APPENDIX A Site Photographs

Matrix Supplied December 22, 2015

1. York Road crossing of Clythe Creek. Structure is a concrete box culvert. A pool has formed downstream from a transition riffle.

2. Looking downstream along Clythe Creek; channel is straight with rock protection located along banks.

Matrix Supplied December 22, 2015

Matrix Supplied December 22, 2015

3. Two clay pipes convey flow downstream from a grade control weir. Channel banks are protected by stone.

Matrix Supplied December 22, 2015

4. Approximately 250 m downstream from York Road, an approximate 1.2 m stone weir grade control structure is present.

Matrix Supplied December 22, 2015

5. Looking downstream along Clythe Creek channel; minor tributary enters the creek in the foreground.

6. Looking downstream along Clythe Creek. Slow-moving water appears to be just below bankfull height.

Matrix Supplied December 22, 2015

Matrix Supplied December 22, 2015

7. Looking upstream along Clythe Creek from the historical stone bridge (access to institution lands); a grade control weir is present in the background.

8. Historical stone bridge is main access to institution lands.

Matrix Supplied December 22, 2015

Matrix Supplied December 22, 2015

9. Looking downstream along Clythe Creek from the historical stone bridge; aesthetic islands are present in the background.

Matrix Supplied December 22, 2015

10. Looking upstream along Clythe Creek; channel is over-widened and stagnant; a CSP culvert contributes surface discharge from the north side of York Road; a sediment bar has formed downstream from the CSP.

Matrix Supplied December 22, 2015

11. Looking upstream along the north pond connection channel and pedestrian bridge.

12. Looking upstream along Clythe Creek; channel is over-widened and slow moving.

Matrix Supplied December 22, 2015

Matrix Supplied December 22, 2015

13. Two CSP culverts convey flows downstream from a parklands access road; channel immediately regains width downstream before Hadati Creek Confluence (background, right bank).

14. York Road crossing of Hadati Creek; structure is a concrete box culvert; gabion wing-walls protect the banks.

Matrix Supplied December 22, 2015

Matrix Supplied December 22, 2015

15. Flow control structure downstream from Hadati Creek confluence.

December 22, 2015

Matrix Supplied

16. Channel remains wide and stagnant downstream from Hadati Creek. Water is turbid, and woody debris is frequent.

Matrix Supplied December 22, 2015

17. Beaver dam located approximately 250 m upstream from the Eramosa River confluence.

Matrix Supplied December 22, 2015

18. Clythe Creek flows immediately adjacent to railway embankment; embankment protection appears to be limited to vegetation. Water turbidity changes colour to appear more beige.

Matrix Supplied December 22, 2015

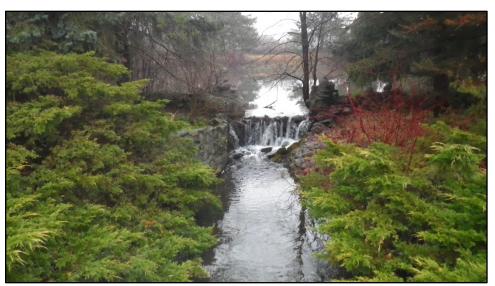
19. Looking downstream along the Eramosa River towards the Clythe Creek confluence located to the right. Railway embankment and bridge structure crossing the Eramosa River also present in background.

Matrix Supplied December 22, 2015

20. Looking upstream along the Eramosa River; embankment separating the south pond and Eramosa River visible in the background left.

Matrix Supplied December 22, 2015

21. South pond connection to the Eramosa River through a CSP pipe elevated approximately 30 cm; the pipe appears to be blocked, and discharge is minimal.


Matrix Supplied December 22, 2015

22. South pond breaches its banks at the pond's northeast corner; flow is contributed to a surface drainage tributary that flows adjacent to the pond and into the Eramosa River.

Matrix Supplied December 22, 2015

23. Drainage channel from decorative ponds discharges into the south pond.

Matrix Supplied December 22, 2015

24. Decorative pond, grade control feature.

YORK ROAD ENVIRONMENTAL DESIGN STUDY: FLUVIAL GEOMORPHIC EXISTING CONDITIONS AND DESIGN OPTIONS

Report Prepared for: AMEC FOSTER WHEELER

Prepared by: MATRIX SOLUTIONS INC.

March 2017 Mississauga, Ontario

Suite 200, 2500 Meadowpine Boulevard Mississauga, ON, Canada L5N 6C4 Phone: 905.877.9531 Fax: 905.877.4143 www.matrix-solutions.com

YORK ROAD ENVIRONMENTAL DESIGN STUDY:

FLUVIAL GEOMORPHIC EXISTING CONDITIONS AND DESIGN OPTIONS

Report prepared for AMEC Foster Wheeler, March 2017

Jennifer Henshaw, M.Sc. Fluvial Geomorphology Specialist <u>reviewed by</u> John Parish, P.Geo. Principal Geomorphologist

DISCLAIMER

We certify that this report is accurate and complete and accords with the information available during the site investigation. Information obtained during the site investigation or provided by third parties is believed to be accurate but is not guaranteed. We have exercised reasonable skill, care and diligence in assessing the information obtained during the preparation of this report.

This report was prepared for AMEC Foster Wheeler. The report may not be relied upon by any other person or entity without our written consent and that of AMEC Foster Wheeler. Any uses of this report by a third party, or any reliance on decisions made based on it, are the responsibility of that party. We are not responsible for damages or injuries incurred by any third party, as a result of decisions made or actions taken based on this report.

TABLE OF CONTENTS

1	INTROD	UCTION	l				
	1.1	Aims ar	nd Objectives1				
2	BACKG	ACKGROUND REVIEW					
	2.1	Study A	rea1				
	2.2	Historic	al Assessment				
	2.3	Previou	s Studies4				
3	METHO	DOLOG	Υ5				
	3.1	Reach [Delineation				
	3.2	Field Re	econnaissance				
		3.2.1	Rapid Geomorphic Assessment7				
		3.2.2	Rapid Stream Assessment Technique7				
	3.3	Detaile	d Assessment Survey				
4	FLUVIA	FLUVIAL GEOMORPHIC EXISTING CONDITIONS					
	4.1	Rapid A	ssessment Results8				
		4.1.1	Reach C-9A10				
		4.1.2	Reach C-9B				
		4.1.3	Reach C-10				
		4.1.4	Reach HC-112				
	4.2	Detaile	d Channel Characterization12				
		4.2.1	Bankfull Geometry				
		4.2.2	Instream Structures				
5	CHANNEL REALIGNMENT - DESIGN OPTIONS10						
	5.1	Option 1 - York Road Widening					
	5.2	Option 2 - Improved Form and Function					
	5.3 Option 3 - Ultimate Channel Configuration						
6	STREAN	/ MORP	HOLOGY CONCLUSIONS AND RECOMMENDATIONS				
7	REFERE	NCES					

LIST OF FIGURES

FIGURE 2.1:	Clythe Creek Subwatershed	2
FIGURE 2.2:	1930 Historical Aerial Image for the Study Area	4
FIGURE 3.1	Clythe Creek Reach Breaks	6
FIGURE 4.1:	Typical Cross-Section within Reach C-9A	15
FIGURE 4.2:	Typical Cross-Section within Reach C-98	15
FIGURE 4.3:	Long Profile Survey of Clythe Creek	16

LIST OF TABLES

TABLE 3.1	Rapid Geomorphic Assessment Classification	7
TABLE 4.1:	General Channel Characteristics as Described by Visual Observations During Rapid	
	Assessments	9
TABLE 4.2:	Summary of the 2015 RGA Scores for Clythe Creek and Hadati Creek	9
TABLE 4.3:	Summary of the 2015 RSAT Scores for Clythe Creek and Hadati Creek	.10
TABLE 4.4:	Channel Geometry Data for Clythe Creek	.13

APPENDICES

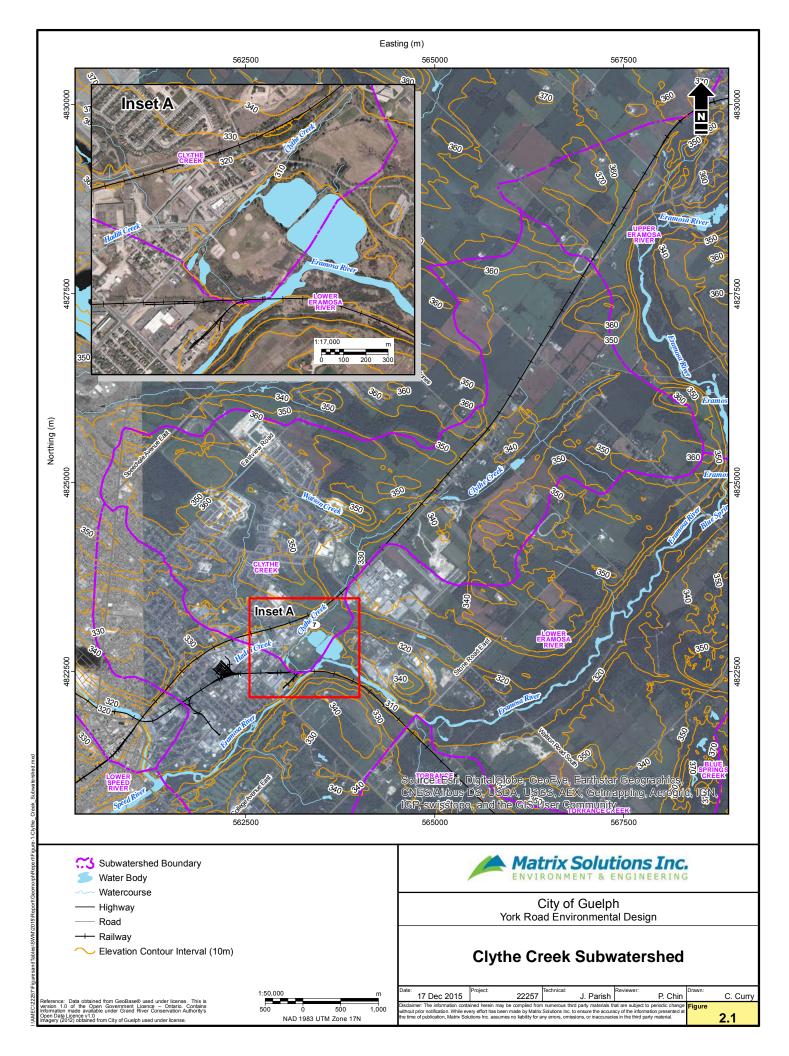
- APPENDIX A Site Photographs
- APPENDIX B Cultural Heritage Features
- APPENDIX C Clythe Creek Channel Alignment Options

1 INTRODUCTION

Matrix Solutions Inc. has been retained by AMEC Foster Wheeler to provide fluvial geomorphic expertise and guidance with regards to the York Road environmental study design. The project objectives are intended to assist with the implementation of the recommendations stemming from the 2007 York Road Improvements Class Environmental Assessment (EA). Specifically, the 2007 EA recommended that York Road be widened from Victoria Road to the East City Limits from its existing 2-lane footprint to a 4-lane roadway with a 1.5 m bicycle lane in each direction and associated curbs, sidewalks, and gutters (NRSI, 2006). As a result of the proposed road widening, there will be impacts to Clythe Creek which flows adjacent to York Road between Watson Parkway and Industrial Avenue. Due to these impacts, recommendations for the channel included the following:

- extension of the existing Clythe Creek culvert crossing of York Road
- relocation of approximately 135 m of Clythe Creek to accommodate the proposed road widening
- implementation of riparian plantings to separate the widened roadway from the relocated Clythe Creek channel

1.1 Aims and Objectives


This report aims to provide an updated baseline inventory of existing fluvial geomorphic conditions with results of detailed field investigations, as well as provide options for preliminary channel realignments required for the widening of York Road.

2 BACKGROUND REVIEW

The background review of Clythe Creek focused on a desktop analysis of existing conditions. The analysis optimized the existing available information obtained through the review of previous studies for the subwatershed, including existing subwatershed, stormwater management, and drainage studies, geographic information, and aerial photography.

2.1 Study Area

Located within the City of Guelph, the local study area of Clythe Creek is situated south of York Road between Watson Parkway and Industrial Avenue. **Figure 2.1** depicts the Clythe Creek subwatershed and the study area.

The Clythe Creek subwatershed is composed of Clythe Creek and its two tributaries, Watson Creek, and Hadati Creek. Clythe Creek joins with the Eramosa River south of York Road and east of Victoria Road. The Clythe Creek subwatershed is approximately a 21 km² drainage area dominated by both agricultural and urban land uses. Clythe Creek is considered a cold water stream with a band of wetland vegetation found along its length. The abundance of groundwater near or at the ground surface in this watershed plays a key role in influencing the composition and distribution of vegetation within the watershed.

The study area of Clythe Creek is located within lands associated with the former Guelph Correctional Centre (GCC) in operation from 1910 to 2001, which is currently owned by Infrastructure Ontario. The close proximity to the GCC buildings has had a large impact on the overall fluvial form and functioning of Clythe Creek within the study area, as numerous culverts, bridges, dams, and weirs have been installed along the channel by inmates of the facility. Additionally, two online ponds have been created with drainage directly into Clythe Creek, as well as the Eramosa River.

2.2 Historical Assessment

A historical aerial image from 1930 (**Figure 2.2**) was obtained for the study area and was used to infer past and present land uses within the area. Within the image, several features that are consistent with current land use are present, including the GCC (buildings and access roads), York Road, railway alignments, and the Eramosa River. Two aesthetic ponds are located on opposite sides of the correctional facility main driveway, and several small drainage features, originating to the west of the correctional facility, are present and discharge directly into the Eramosa River. Clythe Creek flows adjacent to York Road, becoming wider with multiple flow pathways in the downstream direction. Both the north and south ponds are absent from the image.

FIGURE 2.2 1930 Historical Aerial Image for the Study Area

2.3 Previous Studies

Before initiation of the geomorphic field assessment, Matrix conducted a review of background reports and previous studies to determine any relevant information applicable to this specific study. This background review identified reaches that have been delineated and studied by others to reduce redundancy. Watershed based studies (e.g., Eramosa River and Clythe Creek) on the state of the stream's health have been completed during the last few decades. Understanding the available geomorphic information, areas where updates are required, and gaps to be filled will be important to the completion of the study.

Matrix reviewed studies for background information pertaining to the fluvial geomorphic aspects of Clythe Creek. Overall, no study was able to provide a detailed characterization of the entire subwatershed; however, site specific information on channel dimensions and characteristics were obtained for several locations along the channel and within the current study area adjacent to York Road. Several conceptual channel designs have also been created for Clythe Creek as a result of the proposed York Road widening.

A full list and overview of the background reports reviewed can be found in the Geomorphic Background Review Report (Tech Memo #1), (Matrix, 2016).

3 METHODOLOGY

3.1 Reach Delineation

Reaches are lengths of channel (typically 200 m to 2 km) that display similarity with respect to valley setting, planform, floodplain materials, and land use/cover. Reach length will vary with channel scale since the morphology of low order watercourses will vary over a smaller distance than those of higher order watercourses. At the reach scale, characteristics of the stream corridor exert a direct influence on channel form, function, and processes.

Within the Clythe Creek subwatershed overview reviewed as part of the background review assessment (Ecologistics, 1997), ten reaches were identified along the Clythe Creek based on habitat characteristics. The reaches are named based on position along the watercourse chainage; with reach C1 located furthest upstream within the headwaters and reach C10 located furthest downstream extending to the confluence with the Eramosa River. The Clythe Creek reach delineation is displayed on **Figure 3.1**; reach characteristics are displayed in **Table 4.1**.

The study area is located within Reach C-9, which corresponds with the Clythe Creek channel corridor downstream from York Road to the confluence with Hadati Creek. The subwatershed study describes this reach as having bankfull width of 1 to 5 m wide and bankfull depths of 0.5 m. Channel substrate is described as gravel and rubble with a thin organic layer. Riparian cover is mowed lawn with landscaping, numerous artificial waterfalls and weirs to control channel gradient, and several culverts and storm outfalls adding discharge. Reach C-10 extends from the Hadati Creek confluence downstream to the Eramosa River. This reach is described as having bankfull widths range from 10 to 12 m and a bankfull depth of 0.5 m, with silty organic material composing the bed substrate. Riparian cover consists of dense cedar forest with mixed herbaceous an occasional willow trees (Ecologistics, 1997).

Further refinement of this previous delineation is warranted for the current study due to the changes in-channel morphology and planform that exist. For the purposes of the existing study, Reach C-9A represents the upstream segment of Clythe Creek Reach C-9; extending for approximately 445 m downstream from York Road to the historical stone arch bridge that is the main access to the former reformatory facilities. Reach C-9B represents the downstream segment, extending from the historical stone arch bridge 500 m downstream to the confluence with Hadati Creek.

3.2 **Field Reconnaissance**

In order to provide insight regarding existing geomorphic conditions and document any evidence of active erosion, a site visit was conducted on May 14, 2015. During the visit, channel conditions along the Clythe Creek study reaches were evaluated using two established synoptic surveys: the Rapid Geomorphic Assessment (RGA) and the Rapid Stream Assessment Technique (RSAT). Results from the rapid assessments are detailed in Section 4.

3.2.1 **Rapid Geomorphic Assessment**

The RGA was designed by the Ontario Ministry of Environment (1999) to assess urban stream channels. It is a gualitative technique based on the presence and/or absence of key indicators of channel instability such as exposed tree roots, bank failure, excessive deposition, etc. The various indicators are grouped into four categories representing specific geomorphic process: 1) Aggradation, 2) Degradation, 3) Channel Widening, and 3) Planimetric Form Adjustment. Over the course of the survey, the existing geomorphic conditions of each reach are noted and the presence or absence of the specific geomorphic indicators is documented. Upon completion of the field inspection, the indicators are tallied within each category and the subsequent results are used to calculate an overall reach stability index. This index value corresponds to one of three stability classes representing the relative degree of channel adjustment and/or sensitivity to altered sediment and flow regimes (Table 3.1).

Index	Classification	Interpretation
≤0.20	In Regime or Stable (Least Sensitive)	The channel morphology is within a range of variance for streams of similar hydrographic characteristics - evidence of instability is isolated or associated with normal river meander propagation processes
0.21 to 0.40	Transitional/Stressed (Moderately Sensitive)	Channel morphology is within the range of variance for streams of similar hydrographic characteristics but the evidence of instability is frequent
≥0.41	In Adjustment (Most Sensitive)	Channel morphology is not within the range of variance and evidence of instability is wide spread

TABLE 3.1 Rapid Geomorphic Assessment Classification

3.2.2 Rapid Stream Assessment Technique

The RSAT (Galli, 1996) provides a purely qualitative assessment of the overall health and function of a reach in order to provide a quick assessment of local stream conditions and to identify and prioritize restoration needs on a watershed scale. This system integrates visual estimates of channel conditions and numerical scoring of stream parameters using six categories:

1. Channel Stability

- 4. Water Quality
- 2. Erosion and Deposition

- 5. Riparian Conditions

3. Instream Habitat

6. Biological Indicators

Once each condition has been assigned a score, values are totaled to produce an overall stream stability score, or health rating, based on a 50 point total. The final value is then categorized into one of three classes: low (poor health), moderate (moderate health), and high (good health).

Low (Poor Health)	<20
Moderate	=20 to 35
High (Good Health)	>35

Although the RSAT grades streams from a more biological and water quality perspective than the RGA, this information is still relevant within a geomorphic context. In general, the types of physical features that generate good habitat for aquatic organisms tend to represent healthy geomorphic systems as well (e.g., native fish may prefer a well-established riffle-pool sequence with little fine material on the riffles, quality riparian conditions provide food and shade to streams, woody debris and overhanging banks provide habitat structure, etc.).

3.3 Detailed Assessment Survey

Detailed geomorphic assessment surveys were be performed within the study area to support design recommendations. This included cross-section surveys and a longitudinal profile surveyed with a Total Station along with substrate characterization, following a modified Wolman pebble count, and characterization of bank properties. The surveys were used to determine channel bankfull dimensions and provide indications of bed morphology and local energy gradient.

4 FLUVIAL GEOMORPHIC EXISTING CONDITIONS

4.1 Rapid Assessment Results

General observations of channel dimensions, such as bankfull width and depth, substrate size, bank height, in-channel and riparian cover, channel hardening, and other disturbances (e.g., excessive erosion), were documented as part of the overall geomorphic assessment on Clythe Creek and Hadati Creek.

The following section provides results of the rapid assessments for Clythe Creek (Reaches C-9A, C-9B, and C-10) and Hadati Creek (Reach HC-1) within the study area. A summary of channel characteristics describing the reaches is provided in **Table 4.1**. The RGA scores are summarized in **Table 4.2**, and the RSAT scores are presented in Table 4. Additionally, a photographic record of each Reach at the time of the field evaluation is included in **Appendix A**.

TABLE 4.1 General Channel Characteristics as Described by Visual Observations During Rapid Assessments Assessments

Channel Characteristic	C-9A	C-9B	C-10	HC-1
Bankfull Width (m)*	3.5	10 to 19	8.5	3.0
Bankfull Depth (m)*	0.5	0.4 to 0.5	1.0	1.0
Width:Depth Ratio	6.0	20 to 47.5	8.5	3.0
Slope (m/m)	0.0132	0.0018	0.0024	-
Bank Height (m)	0.4	0.4	0.6	1.5 to 2.0
Bed Substrate	Silts and sands with few cobbles	Silts	Silts	Cobbles with some gravels and pebbles
Riparian Vegetation	Some mature willow and cedar	Some mature willows	Mature cedar forest	-
Evidence of Hardening	Stone boulders along banks	Stone boulders along banks	-	Concrete lined

*Bankfull widths and depths were measured with metre stick.

TABLE 4.2 Summary of the 2015 RGA Scores for Clythe Creek and Hadati Creek

		Factor V	Chability				
Reach	Aggradation	Degradation Widening		Planimetric Adjustment	Stability Index	Condition	
C-9A	0.43	0.2	0.4	0.29	0.33	Transitional	
C-9B	0.7	0.2	0.1	0.29	0.32	Transitional	
C-10	0.57	0.1	0.3	0.29	0.32	Transitional	
HC-1	0.29	0.5	0.3	0.14	0.30	Transitional	

			Factor					
Reach	Channel Stability	Scour / Deposition	lnstream Habitat	Water Quality	Riparian Condition	Biological Indicators	Overall Score	Condition
Max. Score	11	8	8	8	7	8	50	
C-9A	6	5	5	3	4	2	25	Moderate
С-9В	6	2	3	2	3	3	19	Low
C-10	6	4	3	3	6	2	24	Moderate
HC-1	5	5	3	4	2	3	22	Moderate

TABLE 4.3 Summary of the 2015 RSAT Scores for Clythe Creek and Hadati Creek

4.1.1 Reach C-9A

Reach C-9A extends downstream from York Road (approximately 175 m west of Watson Parkway) following a generally sinuous planform. The downstream reach break is located at the historical stone arch bridge that serves as entrance to the former GCC. The overall reach length is approximately 455 m. Within the reach, eight historical instream structures have been identified, as well as two outfalls and one tributary confluence. Due to the extent of instream structures which control flow within the reach, the majority of the channel is backwatered into pools. Only two riffle features were observed, comprising of cobble and gravel substrate. Substrate in the pools was predominantly unconsolidated silts and sands. Bankfull width within the reach was measured at 3 m, with bankfull depth at 0.5 m. Due to backwatering effects, water levels throughout the reach were at or near bankfull during the time of the onsite assessments, leading to oversaturated bank material and fracture lines along the top of bank. Bank undercutting was also observed at a few locations towards the downstream extent of the reach; however bolder stone placement along the bank toe throughout the majority of the reach prevents substantial erosion. The RGA score for Reach C-9A is 0.33 indicating a channel in transition, with evidence of aggradation being the dominant geomorphic factor influencing channel function. The RSAT score of 25 indicated the channel in generally in moderate health, however major limiting factors in the reach include water quality, riparian conditions, and biological indicators.

4.1.2 Reach C-9B

Reach C-9B extends downstream from the historical stone arch ridge to the confluence with Hadati Creek. The overall reach length is approximately 500 m. Within the reach is the outlet to the Reformatory Ponds. Active wetted width ranges from 2 m at pinch points to 20 m, with water depth ranging from 0.2 to 0.4 m. Riffle-pool morphology was not observed and the overall channel gradient is low with extensive aggradation of unconsolidated fine silts. Unconsolidated sediment was measured along the bed and ranged from 0.5 to over 1 m in depth downstream from the Reformatory Ponds outlet. The extensive aggradation observed within the reach is likely a result of the low gradient and stagnant flow throughout the reach. Apart from local increases in velocity at drop-structures, flow was barely observed as moving until the downstream reach break. Several mature willow trees are located along the channel banks, however there are broad gaps in cover over the channel. Channel banks have been hardened with boulder placement similar to the upstream reach. In total, four bridges, three drop-structures, and one corrugated steel pipe (CSP) outlet were observed within the reach. Each of the bridges and drop-structures are found at pinch points along the channel. An additional bridge is located over the Reformatory Ponds outlet channel. The RGA score for Reach C-9B is 0.32 indicating a channel in transition with evidence of aggradation being the dominant geomorphic factor influencing channel function. The RSAT score of 19 indicates that the channel is in poor health. Limiting factors are found in nearly all factor value categories including extensive deposition, lack of suitable instream habitat, water quality issues, riparian conditions, and biological indicators.

4.1.3 Reach C-10

Reach C-10 extends downstream from the Hadati Creek confluence to the confluence with the Eramosa River adjacent to the CP Rail bridge over the Eramosa at the confluence. Channel planform within the reach is typically straight, however the channel changes direction do to historical alteration of the Industrial Ponds and influences of the CP Rail line embankment. Downstream from the Hadati Creek confluence the channel branches into a north and south alignment, each flowing though one of the Industrial Ponds, forming an islands. A single channel connects the two ponds at the western property extent. At the outlet from the southern Industrial Pond, the reach follows a straight planform to the southeast before flowing along the CP Rail embankment until the Eramosa River confluence. Total reach length is approximately 450 m along the dominant flow path through the southern Industrial Pond. Bankfull channel dimensions were measured at 8.5 m wide and 1 m deep. Riparian corridor is comprised of a cedar forest with beaver activity present along the banks. A single beaver dam is located along the channel 150 m upstream from the Eramosa River confluence. Due to the beaver dam, as well as the Industrial Ponds, flow through this reach is slow and sediment accumulation along the bed is extensive. Unconsolidated silt and sand deposition along the bed ranges from 0.1 to 0.2 m throughout the reach. The RGA score for Reach C-10 is 0.32 indicating a channel in transition, with evidence of aggradation being the dominant geomorphic factor influencing channel function. The RSAT score of 24 indicates the channel reach in generally in moderate health, however major limiting factors include extensive deposition, lack of diverse instream habitat, water quality, and biological indicators.

4.1.4 Reach HC-1

Hadati Creek was walked for approximately 200 m upstream from the Clythe Creek Confluence. For the first 75 m upstream from Clythe Creek, Hadati Creek is partially channelized with the right bank lined with eroding cement cushions. Few trees are growing out of the banks, and have exposed, elevated roots. Bank heights are approximately 1.5 to 2.0 m tall and are near vertical. At several locations along the outer meander bends the cement cushions are undermined. Bankfull width was measured at approximately 3.0 m and bankfull depth at 1.0 m. Bankfull measurements were determined by the height of exposed tree roots and an inflection in the exposed soil profile. At Beaumont Crescent, the channel becomes briefly concrete lined as is flows through a box culvert. Upstream from Beaumont Crescent the channel is heavily entrenched within the roadside ditch with bank heights over 2.0 m and vertical. The exaggerated entrenchment of the channel upstream from Beaumont Crescent is likely a result of historical trenching. Approximately 120 m upstream from Beaumont Crescent, the main Hadati Creek Channel and a tributary converge. The RGA score for Reach HC-1 is 0.3 indicating a channel in transition, with evidence of degradation being the dominant geomorphic factor influencing channel function. The RSAT score of 22 indicates the channel reach in generally in moderate health; however, major limiting factors include lack of riparian corridor, lack of instream habitat, water quality, and biological indicators.

4.2 Detailed Channel Characterization

A geomorphic survey was conducted within reach C-9A, C-9B, and C-10 of the York Road study area in order to gain an understanding of the existing channel function and stability. Approximately 1.4 km of channel was surveyed from the upstream York Road reach break to the Eramosa River confluence.

The collection of more complete field data to also aids in defining current channel geometry and hydraulics. Detailed field data collection included the following tasks:

- measurement of bankfull channel geometries via cross-section surveys at nine locations
- characterization of bank parameters, such as height, angle, sediment composition, degree of vegetative cover, and other metrics
- identification of the median sediment size along the bed and a description of clast size distributions at the nine cross-section survey sites
- determination of local energy gradients through a survey of channel bottom and bankfull elevations, including top-of-riffle and bottom-of-riffle (where applicable), maximum depth, and any obstructions to flow

4.2.1 Bankfull Geometry

Bankfull geometry was recorded at nine cross-sections: five within Reach C-9A and four within Reach C-9B. **Table 4.4** contains a summary of the bankfull parameters, including mean values for all cross-section sites in the study reaches. **Figure 4.1** and **Figure 4.2** provide a typical channel cross-section for each reach and **Figure 4.3** depicts the overall longitudinal profile from York Road to the Eramosa River confluence. Cross-sections were not surveyed within Reach C-10.

The typical cross-section for Reach C-9A (**Figure 4.1**) depicts generally consistent bank heights and a U-shape channel bed. Due to the U-shape cross-section, the thalweg through the reach is typically located in the center of the channel. Bankfull channel width ranged from 3 to 4 m, with an average of 3.39 m. Bankfull hydraulic depths (i.e., average depth across the cross-section) varied between 0.29 and 0.42 m, averaging 0.36 m. The average maximum depth was 0.64 m. These recorded channel widths and depths form cross-sections with areas between 0.93 and 1.75 m² and an average width to depth ratio of 9.67. The long profile (**Figure 4.3**) shows that the gradient along through Reach C-9A from York Road to the historic stone arch bridge is low-moderate, with an average slope of 0.012 m/m.

The typical cross-section for Reach C-9B (**Figure 4.2**) is drastically different from what is observed upstream. Bankfull channel widths range from 9 to 11 m, with an average of 10.19 m. Bankfull hydraulic depths varied between 0.31 and 0.53 m, averaging 0.44 m. The average maximum depth was 0.8 m. The recorded channel widths and depths form cross-sections with areas averaging 6 m² and an average width to depth ratio of 23.83. The long profile shows that the gradient through this reach is low, with an average slope of 0.0049 m/m. Although the gradient throughout the reach is predominantly flat, several weir structures controlling the gradient are located within the upstream quarter of the reach near the historic bridge. A reverse gradient is observed within the reach upstream from the Hadati Creek confluence, contributing to the observed standing water downstream from the pond outlet.

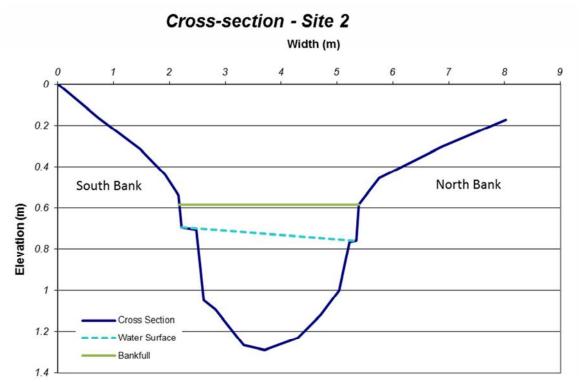

Cross-section Parameter	Minimum	Maximum	C-9A Average	Minimum	Maximum	C-9B Average
Bankfull Width (m)	3.04	4.0	3.39	9.03	11.08	10.19
Average Bankfull Depth (m)	0.29	0.42	0.36	0.31	0.53	0.44
Maximum Bankfull Depth (m)	0.44	0.75	0.64	0.61	0.96	0.8
Bankfull Width:Depth	9.02	11.59	9.67	19.61	28.77	23.83
Cross-sectional Area (m ²)	0.93	1.75	1.51	3.75	7.19	6.0
Wetted Perimeter (m)	3.4	473	3.98	9.21	11.43	10.62
Hydraulic Radius (m)	0.27	0.45	0.38	0.41	0.65	0.56

TABLE 4.4 Chan	nel Geometry Data	for Clythe Creek
----------------	-------------------	------------------

Bankfull width was determined in the field by identifying grade inflections that are associated with the start of the floodplain, as well as changes in vegetation growth and exposed roots. The bankfull elevation of the channel is typically associated with the point at which overbank flooding occurs if overtopped. Within the study reaches, water level was frequently observed at or near bankfull level. Oversaturated banks and hummocky terrain in close proximity to the channel indicates that the channel is frequently overtopped, that the channel is undersized, or that there are barriers preventing the downstream movement of water.

Width to depth ratio is defined as the ratio of the bankfull surface width to the average depth of the bankfull channel and is a ratio that helps to interpret prevailing energy distributions within a channel and the ability of various discharges to move sediment downstream through the reach. Channels with a high width to depth ratio, such as Reach C-9B, are characteristically wide and shallow. Deposition in channels with a high width to depth ratio is common, as the over-widened nature reduces the channels ability to transport sediment.

The presence of bedrock observed near the surface of the existing bed profile, as seen on the original York Road Reconstruction and Trunk Watermain engineering drawings (Guelph, 1988a and b) may have an influence on the overall gradient of the channel. Several bedrock inflections are recorded in the vicinity of significant instream structures, particularly near the historic stone arch bridge. The potential for bedrock outcropping being the basis for structure placement or that the structures were intentionally built on top of bedrock, could lead to further understanding of exiting conditions and downstream channel morphology. Within Reach C-9B, where the channel is dominated by aggradation processes, channel widening can then be associated with downstream adjustments to the degradation process and particularly changes in bed slope. The containment of flows within a degrading channel increases available energy and typically leads to erosion of one or both banks where the bed material is more resistant to erosion (i.e., bedrock material) than bank materials. Coupled with a sharp decrease in slope, there is expected to be a natural widening of the channel.

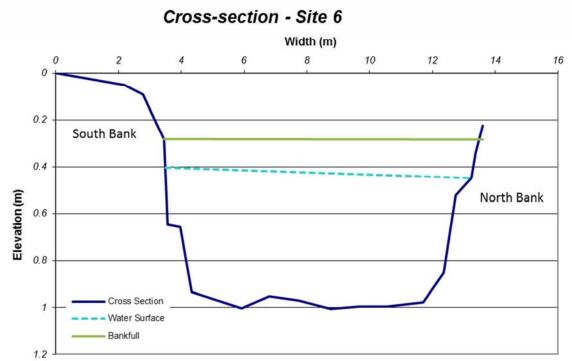


FIGURE 4.2 Typical Cross-Section within Reach C-9B

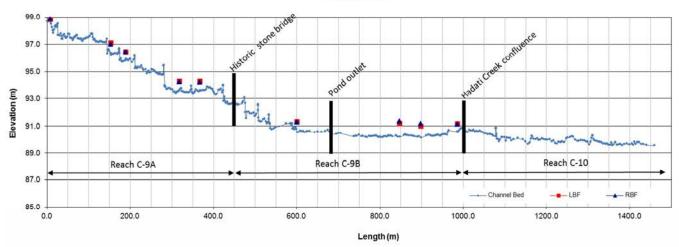


FIGURE 4.3 Long Profile Survey of Clythe Creek

4.2.2 Instream Structures

During the detailed field assessments, an inventory of all instream structures, bridges, and outlets was completed and information regarding location, type, drop height, and influences to the stream system were recorded.

In total, nine instream structures of a cultural heritage nature were observed as having direct contact with flow within Reach C-9A and seven structures within Reach C-9B, which are present within the first 125 m of the reach. Additionally, there are three pedestrian bridges that have limited cultural heritage value and a double CSP culvert crossing with no cultural heritage value within Reach C-9B. A detailed inventory of these structures and how they impact channel processes is included in Appendix B. These structures need to be considered when proposing recommended channel realignments through the study area.

5 CHANNEL REALIGNMENT - DESIGN OPTIONS

Due to the proposed widening of York Road it will be necessary to undertake channel realignments to accommodate proposed grading of the roadway. Several design options have been considered with the primary focus on optimizing channel dynamics, while considering grade controlling instream structures that have been installed along the channel and are considered to be features of cultural importance. It is important to consider several options with regards to channel realignment and how they will ultimately impact the form and function of the channel. Particularly within the lower reaches of the study area (i.e., Reaches C-9B and C-10) where Clythe Creek is considered to be in a state of reduced fluvial function associated with an over-widened channel and low gradient, there are opportunities to advance restoration options beyond minimum requirements for roadway grading.

5.1 Option 1 – Do Nothing

In order to accommodate the proposed widening of York Road adjacent to the study area, required channel works are proposed as Option 1 (**Appendix C**). For this option, little work will be done to the channel other than general maintenance required following road widening works. This option is considered consistent with recommendations made in the 2007 Class EA, in which all cultural heritage features will be maintained and creek works are minimized (NRSI, 2006).

For this option all cultural heritage feature will be maintained within the creek and no channel realignments will occur. As a result, the existing fish passage issues and impaired fluvial form and function of the channel will remain.

While this work would be recommended as interim until further improvements to the channel can be made, several aspects of the design have been included in order to enhance fish passage requirements.

Within Reach C-9A, local works will be required to restore the channel following a culvert extension or replacement at York Road. There will be no impact to cultural heritage features located within the channel. In order to maintain the features, a retaining wall will be constructed adjacent to features 9 and 10 in order to accommodate grading requirements of the road widening.

5.2 Option 2 - Improved Form and Function

Minimal channel works required for the proposed widening are not expected to improve in the overall function or habitat of Clythe Creek. Therefore, additional channel works are proposed. Option 2 (**Appendix C**) channel works would be considered the minimum required in order to improve channel function.

For Option 2, works within Reach C-9A will include an extensive channel realignment that will bring the creek well away from the York Road right-of-way and utilize more of the floodplain. The realignment will also utilize the existing groundwater tributary planform. The realignment for Reach C-9A has an optional fish passage channel that would slit flow around a significant cultural heritage feature. As a result of this channel realignment, the majority of the cultural heritage features will be taken off-line but remain within the landscape.

In order to improve the functioning of Reaches C-9B and C-10, significant grading work are proposed in order to narrow the channel and create a consistent bed profile. The outlet of the northern Reformatory Pond will also be narrowed in an effort to limit interactions between the pond and creek channel. The bed and bank grading will continue downstream to the existing flow splitter which will be removed.

5.3 Option 3 - Ultimate Channel Configuration

While improvements will be made to the overall function and habitat of Clythe Creek should Option 2 be implemented, further channel works should be considered in order to maximize the restoration potential within Clythe Creek (**Appendix C**).

For Option 3, works within Reach C-9A will correspond to works proposed under Option 2. An extensive channel realignment will bring the creek well away from the York Road right-of-way and utilize more of the existing floodplain. The realignment will also utilize the existing groundwater tributary planform. The realignment for Reach C-9A has an optional fish passage channel that would slit flow around a significant cultural heritage feature. As a result of this channel realignment, the majority of the cultural heritage features will be taken off-line but remain within the landscape.

In order to improve the functioning of Reach C-9B, significant grading work is proposed along both the bed and the banks in order to narrow the channel and create a steeper bed profile. The outlet of the northern Reformatory Pond will also be narrowed in addition to the outlet elevation being raised in an effort to limit interactions between the pond and creek channel. The bed and bank grading will continue downstream with Reach C-10, where a full channel realignment will occur downstream from the Hadati Creek confluence. As a result, the existing flow splitter will be taken off-line. The existing channel extends downstream from the realignment will be repurposed as necessary to accommodate storm water management practices.

6 STREAM MORPHOLOGY CONCLUSIONS AND RECOMMENDATIONS

A geomorphic assessment has been completed to assist with the detailed design and restoration of Clythe Creek within the York Road study area. This assessment reviewed background information, which included past documents, aerial photos, and contour mapping. Watercourse reaches were identified along the study corridor using desktop analyses and were further assessed in the field. During the field investigation, indicators of active geomorphic processes were noted, channel dimensions were measures and a stability index was provided for each reach as required. Additional detailed geomorphic surveys were carried out along two tributaries within the study corridor in order to investigate possible bed degradation that could pose a hazard to proposed sanitary sewer infrastructure.

As a result of proposed widening of York Road, it is necessary to consider the impact these works will have on Clythe Creek which flows parallel to the roadway. As existing channel conditions are severely impaired, the opportunity exists to improve overall health and function of the creek. Following a review and analysis of existing conditions, three options for channel improvements have been made which correspond to the minimum amount of work required (consistent with the 2007 EA), as well as two additional options which will improve the fluvial form and function of the channel and fish passage.

7 **REFERENCES**

- City of Guelph (Guelph). 1988a. York Road Reconstruction and Trunk Watermain Station 0+660 to Station 1+000. Contract No. 88-19. Drawing No:S-55.Engineering Drawings. August 12, 1988.
- City of Guelph (Guelph). 1988b. York Road Reconstruction and Trunk Watermain Station 0+000 to Station 1+340. Contract No. 88-19. Drawing No:2F-53.Engineering Drawings. August 19, 1988.
- Ecologistics Limited (Ecologistics). 1998. *Clythe Creek, Subwatershed Overview*. Report prepared for Metrus Developments Inc. Waterloo, Ontario. November 1997. Updated April 1998.
- Galli J. 1996. "Rapid Stream Assessment Technique (RSAT) Field Methods." Draft memorandum. Metropolitan Washington Council of Governments. Washington, D.C. 36 pp.
- Matrix Solutions Inc. (Matrix). 2016. Draft York Road Environmental Study Design Geomorphic Background Review - Technical Memorandum #1. Report prepared for AMEC foster Wheeler. Mississauga, Ontario. February 2016.
- Natural Resource Solutions Inc. (NRSI). 2006. "Environmental Input to the EA for the Widening of York Road, Victoria Road to the East City Limit, Guelph, Ontario." Draft report prepared for the City of Guelph. September 2006.
- Ontario Ministry of the Environment (MOE). 2003. *Stormwater Management Planning and Design Manual.* Queen's Printer. Ottawa, Ontario. March 2003. <u>http://www.ontario.ca/document/stormwater-management-planning-and-design-manual</u>

APPENDIX A Site Photographs

1. Reach C-9A: Clythe Creek culvert inlet at York Road. Gabion protection along road embankment and rip rap placement along the channel banks. Channel approaches culvert at a 45 degree angle; rip rap protection limits bank scour at inlet.

Matrix Solutions Inc. May 5, 2016

2. Reach C-9A: Substrate inside York Road culvert. Wetted channel width occupies the entire culvert width.

Appendix A Site Photographs

Matrix Solutions Inc. May 5, 2016

3. Reach C-9A: Looking downstream from York Road culvert outlet.

Matrix Solutions Inc. May 5, 2016

4. Reach C-9A: Typical cross section within the reach. Water level site near bankfull, banks are oversaturated and slumping causing hummocky terrain.

Appendix A Site Photographs

Matrix Solutions Inc. May 5, 2016

5. Reach C-9A: Banks are typically lines with small boulders.

6. Reach C-9A: Channel outflanks in-stream weir structure.

Matrix Solutions Inc. May 5, 2016

7. Reach C-9A: Section of over widened channel upstream from weir where water is ponded. Sediment deposition occurs and cat tail growth observed.

Matrix Solutions Inc. May 5, 2016

8. Reach C-9A: Channel is locally widened downstream from weir structure that spans approximately 2x bankfull width. Deposition and infill occurs to compensate.

9. Reach C-9A: Tributary channel through ornamental grounds that confluences' with Clythe Creek.

Matrix Solutions Inc. May 5, 2016

10. Reach C-9A: Minor debris upstream from wier.

11. Reach C-9B: Looking upstream towards man-made island and main correctional facility entrance.

Matrix Solutions Inc. May 5, 2016

12. Reach C-9B: CSP outlet and sediment deposition plume upstream from pedestrian bridge.

Appendix A Site Photographs

Matrix Solutions Inc. May 5, 2016

13. Reach C-9B: Looking upstream along Clythe Creek adjacent to Jaycee Park.

14. Reach C-9B: Looking downstream along Clythe Creek adjacent to Jaycee Park.

Matrix Solutions Inc. May 5, 2016

15. Reach C-9B: Double CSP culvert at entrance to Jaycee Park.

Matrix Solutions Inc. May 5, 2016

16. Reach C-10: Clythe Creek downstream from Hadati Creek confluence; flow is ponded upstream from flow splitter.

17. Reach C-10: Flow splitter structure installed along Clythe Creek.

Matrix Solutions Inc. May 5, 2016

18. Reach C-10: Beaver dam towards the downstream extent of the reach contributing to ponding water.

19. Reach C-10: Channel flows adjacent to CNRL embankment at the Eramosa River confluence.

Matrix Solutions Inc. May 5, 2016

20. Reach C-10: Confluence with the Eramosa.

21. Reach HC-1: Looking downstream towards York Road culvert crossing.

11

22. Reach HC-1: Looking upstream along Hadati Creek.

Matrix Solutions Inc. May 5, 2016

23. Reach HC-1: Concrete cushion bank protection installed along the west bank is failing.

24. Reach HC-1: Concrete block wall at channel bend is undermined.

Matrix Solutions Inc. May 5, 2016

25. Reach HC-1: Channel immediately downstream form Beaumont Cres. Both banks are lines with concrete and shale bricks. Bank protection is undermined along meander bend.

Matrix Solutions Inc. May 5, 2016

26. Reach HC-1: Looking upstream towards Beaumont Cres culvert crossing.

Appendix A Site Photographs

Matrix Solutions Inc. May 5, 2016

27. Reach HC-1: Beaumont Cres culvert inlet.

28. Reach HC-1: Looking upstream from Beaumont Cres crossing. Channel is lined with concrete for approximately 18 m.

14

Matrix Solutions Inc. May 5, 2016

Matrix Solutions Inc. May 5, 2016

29. Reach HC-1: Channel occupies roadside ditch and has been historically altered.

Matrix Solutions Inc. May 5, 2016

30. Reach HC-1: Culvert crossing at Industrial Ave. Channel has been buried for approximately 60 m upstream from Industrial Ave.

31. Reach HC-1: Inlet 60 m upstream from Industrial Ave. Channel was dry at the time of field inspection.

Matrix Solutions Inc. May 5, 2016

32. Reach HC-1: Elizabeth Street culvert crossing

33. Reach HC-1: Upstream from Elizabeth Street the channel is confined through private property.

Matrix Solutions Inc. May 5, 2016

34. Reach HC-1: Bedrock influence along the channel bed upstream from Suburban Ave.

APPENDIX B Cultural Heritage Features

 Feature #1: Ashlar stone culvert (potential significance) north of York Road. Culvert is 25 m upstream from York Road and conveys Clythe Creek flow underneath the CNR line. The double box culvert has approximate dimensions of 1.2 m wide by 1.4 m high. Substrate is present along the bed of the culvert however, natural light does not penetrate and the upstream inlet is not visible.

City of Guelph n/a

2. Feature #2: Reinforced concrete road bridge railing (potential significance) north of York Road. Railing has been reinforce with gabion and rip-rap.

Feature #3: Fieldstone weir with steps and sentinel stones (listed, non-designated significant feature). Structure height is 0.5 m above water level with an additional 0.45 m scour pool (total height above bed 0.95 m). At the time of survey, flow depth over the structure was 0.08 m and 1.6 m wide. Backwatering upstream from the structure had a depth of 0.45 m. Channel has scoured out downstream from the weir, over-widening the channel to 4m

City of Guelph n/a

4. Feature #4: Fieldstone garden wall with sentinels (listed, non-designated significant feature). Feature extends for 110 m south-east across the floodplain.

5. Feature #5: Fieldstone weir with clay pipes (listed, non-designated significant feature). Two clay pipes are imbedded into concrete and fieldstone weir structure. The feature is 2m wide and has a total height of 1.1 m; 0.5 m above existing water level plus 0.6 m scour depth. Feature imposes a significant barrier to downstream flow movement and has trapped woody debris at its crest.

City of Guelph n/a

6. Feature #6: Fieldstone steps (listed, non-designated significant feature). Feature is located on the floodplain north of Clythe Creek and south of York Road.

City of Guelph n/a

7. Feature #7: Large boulder or bedrock outcrop (potential significance). Feature is located on the floodplain north of Clythe Creek and south of York Road.

Matrix Solutions Inc. May 5, 2016

Feature #8: Fieldstone weir (listed, non-designated significant feature). This feature is made from fieldstone and concrete with decorated stones placed along the banks. The feature is 1m high;
 0.55 m above existing water level plus 0.45 m scour pool. The upstream pool created by backwater is 0.4 m deep with a flow depth of 0.04 m over the crest of the feature. Width of the feature is 2m conforming to the bankfull channel.

9. Feature #9: Fieldstone weir (listed, non-designated significant feature). This feature is located within a group of cedar trees and the feature and been outflanked to the south. Channel banks are lined with decorative stone and gabion baskets are in place along the road embankment to the north. The feature is 0.9 m high with a downstream scour pool

Matrix Solutions Inc. May 5, 2016

Feature #10: Fieldstone weir (listed, non-designated significant feature). No in-stream structure is visible, however banks are lines with decorative stone. Bankfull width is 2m and wetted depth is 0.15 m.

11. Feature #11: Fieldstone weir with steps and ashlar stone terrace wall (listed, non-designated significant feature). This feature is 4m wide and 1.4 m high from the channel bed to crest. Stone placement along the channel bed downstream from the feature limits scour. Decorative stone placement line the banks of the channel.

City of Guelph n/a

12. Feature #12: Ashlar limestone wall (listed, non-designated significant feature). The feature is approximately 10m in length and extends south across the floodplain adjacent to Feature #11.

13. Feature #13: Confluence of Clythe Creek and intermittent stream (potential significance). The intermittent stream flows through the southern floodplain and typically conveys groundwater flows. There is a small CSP culvert crossing immediately upstream from the confluence that allows for pedestrian crossing.

Matrix Solutions Inc. May 5, 2016

14. Feature #14: Fieldstone weir with cut stone terrace wall (listed, non-designated significant feature). The crest of this feature is 1.5 m wide between the two main sentinel stones and is 1.45 m high from the base of the downstream scour pool. The backwater pool upstream from the feature is 0.55 m deep. Noticeable sedimentation is occurring behind the structure, with unconsolidated material measuring 10-15 cm.

City of Guelph n/a

Feature #15: Fieldstone east entrance wall with sentinel stones (listed, non-designated significant feature). This feature is located to the north of the channel adjacent to York Road. The feature is 42 m long.

City of Guelph n/a

16. Fieldstone west entrance wall with sentinel stones (listed, non-designated significant feature). This feature is located to the north of the channel adjacent to York Road. The feature is 50 m long.

17. Feature #17: Stone and concrete road bridge (listed, non-designated significant feature). The bridge and wing-wall structure is approximately 14 m wide. The inlet to convey Clythe Creek is 4m wide and is considered to be undersized from a geomorphic perspective as the channel has widened and pooled on either side of the inlet.

Matrix Solutions Inc. May 5, 2016

18. Feature #18: Fieldstone steps to the south of road bridge (listed, non-designated significant feature). The steps lead from the driveway entrance, down to Clythe Creek south of the bridge.

City of Guelph n/a

19. Feature #19: Entrance sign, ashlar stone with jack arch (potential significance). The sign is located south of the creek channel and east of the main entrance drive way.

City of Guelph n/a

20. Feature #20: Ashlar dry stone wall (listed, non-designated significant feature). The wall is 160 m long and runs parallel to the main entrance driveway south of the creek channel.

Google Earth December 21, 2016

21. Feature #21: Willowbank Hall (listed, non-designated significant feature). The building structure is located to the south-west of the main entrance driveway and is a prominent landscape feature when visitors enter the property.

Matrix Solutions Inc. May 5, 2016

22. Feature #22: Fieldstone weir (listed, non-designated significant feature). The feature is located 6m downstream from Feature #17, and is made from concrete with small boulders protruding which emphasizes the "rushing" waterfall effect. Structure width is 2.5 m along the crest and is 1.5 m height from the downstream bed elevation. The downstream water depth within the associated scour pool is 0.8 m.

23. Feature #23: Fieldstone weir (listed, non-designated significant feature). This feature is located to the south of a man-made island downstream from the main entrance. The feature is 2m wide and is made out of concrete with small boulders protruding which emphasizes the "rushing" waterfall effect. Channel banks are lined with decorative stone and there is visual evidence of the structure detaching from the bank.

Matrix Solutions Inc. May 5, 2016

24. Feature #24: Fieldstone weir (listed, non-designated significant feature). This feature is located to the north of a man-made island downstream from the main entrance. The feature is 2.1 m wide and is made out of concrete with small boulders protruding which emphasizes the "rushing" waterfall effect. Channel banks are lined with decorative stone. There are fracture lines present along the northern bank adjacent to the downstream stone wall. The structure is 0.7 m high, with the downstream bank heights/stone wall 1m high. Stone placement along the channel bed limits scour.

25. Feature #25: Fieldstone weir (listed, non-designated significant feature). This feature is located downstream from the man-made island and 60m downstream from Feature #17 (main bridge). The feature is 5.5 m wide, however active flow width is only 4m over the crest. Height of the structure is 0.8 m from the downstream channel bed, with maximum scour depth of 0.5 m. Water depth upstream from the structure is 0.45 m, and the channel is heavily silted with deposition.

Matrix Solutions Inc. May 5, 2016

26. Feature #26: Fieldstone weir (listed, non-designated significant feature). The feature height is 1m from the crest to the downstream channel bed, scour depth is 0.4 m. The feature is spanned by Feature #27 and decorative stone is places along the banks.

27. Feature #27: Arched concrete and metal pedestrian bridge with stone abutments (potential significance). The bridge is 6.5 m long, and 2.5 m wide, the opening between footings allowing for channel flow is 3.5 m wide.

City of Guelph n/a

28. Feature #28 and #29: Limestone pillars with wood board fencing leading to main entrance (potential significance). This feature runs parallel to York Road north of Clythe Creek, and extends for 630 m along the edge of the property.

Appendix B Cultural Heritage Features

> City of Guelph n/a

29. Feature #30: Limestone pillars (potential significance). This feature runs parallel to York Road north of Clythe Creek, and extends for 630 m along the edge of the property.

Matrix Solutions Inc. May 5, 2016

30. Feature #31: metal and wooden pedestrian bridge (potential significance). The bridge is 7m long and 1.8 m wide, with a metal railing and concrete block footings. Water depth under the bridge is 0.65 m with 0.8 m freeboard between the water surface and the bridge deck. Minimum width of the outlet channel is 6.5 m indicating that the bridge is likely undersized.

31. Feature #32: Metal and wood pedestrian bridge (potential significance). This pedestrian bridge leads from the south floodplain downstream from Feature #31 to a small island feature within Clythe Creek. The bridge is 9m long and 1.1 m wide sitting on concrete block footings. Wetted depth under the bridge is 0.28 m. Significant sedimentation has occurred within the vicinity of the bridge, with a depth of approximately 0.55 m of soft unconsolidated material present.

City of Guelph n/a

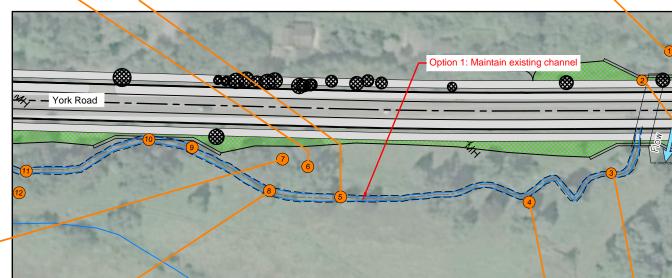
32. Feature #33: Metal and wood pedestrian bridge (potential significance). The bridge spans Clythe Creek 120 m east of the driveway to Jacees Park. The Bridge is 7m long and 1.15 m wide, the deck sits 0.75 m above water level.

33. Feature #34: Confluence of Clythe Creek and Hadati Creek (potential significance). Hadati Creek flows south-east, crossing perpendicular to York Road through a concrete box culvert.

Matrix Solutions Inc. May 5, 2016

34. Feature #35: Concrete and stone weir (potential significance). Total height of the feature is 0.7 m, with 0.35 m downstream water depth. The structure is 5.5 m wide and is constructed with concrete and decorative limestone blocks along the banks.

APPENDIX C Clythe Creek Channel Alignment Options


Feature #6: Fieldstone steps (listed, non-designated significant feature). No impact to feature anticipated.

Feature #5: Fieldstone weir with clay pipes (listed, non-designated significant feature). No impact to feature anticipated.

Feature #7: Large boulder or bedrock outcrop (potential significance). No impact to feature anticipated.

Feature #8: Fieldstone weir (listed, non-designated significant feature). No impact to feature anticipated.

Feature #4: Fieldstone garden wall with sentinels (listed, non-designated significant feature) No impact to feature anticipated.

		d significant feature).	9.9989	A Division of A Division of Matrix Solutions Inc.		
		REVISION AMEC Foster Wheeler York Road Widening				AMEC Foster Wheeler
						York Road Improvements Clythe Creek Option 1 - Reach C-9A Cultural Heritage Feature Impacts
						Date: Project: Technical: Reviewer: Drawn: E. Drost St. Henshaw J. Parish E. Drost
00 No.	01 17 2017 DATE	Issued for client review DESCRIPTION	JH BY	JP CHK.	ED DRN.	Disclaimer: The information contained herein may be compiled from numerous third party materials that are subject to periodic charges. Figure without prior outficiation. While every effort has been made by Matrix Solutions Inc. to ensure the accuracy of the information presented at the time of publication. Matrix Solutions Inc. assumes no liability for any errors, orinissions, or inaccuracies in the third party material. 01

Notes:

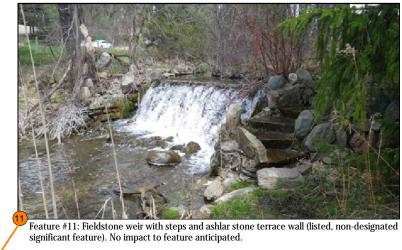
1. Refer to drawing 02 for photos of features 9, 10, 11 and 12.

 For full plan and profile design information on Option 1, refer to drawings 06-08.

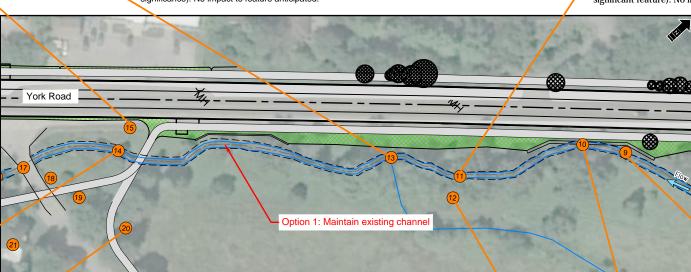
ECTS2227 - York Road Guelphil 45912 - AMEC - York Road Environmental Design Study03 DataICADIMatrix CADI22257 York Road - CHF Figs-Option 1_01-09-2017.3wg - CHF 01 - Tuesday, January 17, 2017 10:

Feature #1: Ashlar stone culvert (potential significance). No impact to feature anticipated.

Feature #2: Reinforced concrete road bridge railing (potential significance). Feature to be modified to accommodate road widening works.



Feature #3: Fieldstone weir with steps and sentinel stones (listed, non-designated significant feature). No impact to feature anticipated.


Feature #15: Fieldstone east entrance wall with sentinel stones (listed, non-designated significant feature)

Feature #14: Fieldstone weir with cut stone terrace wall (listed, non-designated significant feature).

Feature #20: Ashlar dry stone wall (listed, non-designated significant feature). No impact to feature anticipated.

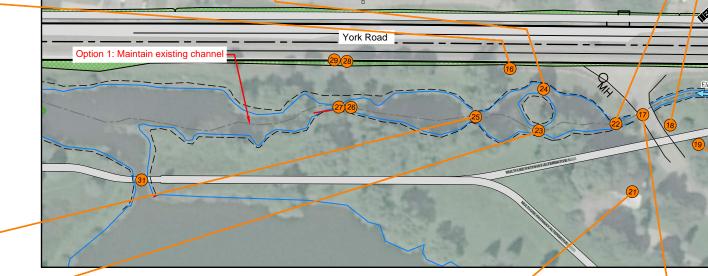
Feature #12: Ashlar limestone wall (listed, non-designated significant feature). No impact to feature anticipated.

		1:1500 15	0 Datum	15	Meters 30	A Division of A Division of Matrix Solutions Inc.
	REVISION AMEC Foster Wheeler York Road Widening					
						York Road Improvements Clythe Creek Option 1 - Reach C-9A Cultural Heritage Feature Impacts
						Date: 01 17 2017 Project: Technical: Reviewer: Drawn: E. Drost
00 No.	01 17 2017 DATE	Issued for client review DESCRIPTION	JH BY	JP CHK.	ED DRN.	Disclaimer: The information contained herein may be compiled from numerous third party materials that are subject to periodic hange without prior notification. While every effort has been made by Matrix Solutions Inc. to ensure the accuracy of the information presented at the time of publication. Matrix Solutions Inc. assumes on liability for any errors, omissions, or inaccuracies in the third party material.

- 1. For full plan and profile design information
- On Option 1, refer to drawings 06-08.
 Refer to drawing 03 for photos of features 17, 18,19 and 21.

Feature #9: Fieldstone weir (listed, non-designated significant feature). No impact to feature anticipated. Retaining wall required to be built to protect/maintain feature from anticipated roadway grading limits.

be modified as a result of roadway grading requirements.


Feature #24: Fieldstone weir (listed, non-designated significant feature). No impact to feature anticipated.

Feature #22: Fieldstone weir (listed, non-designated significant feature). No impact to feature anticipated.

Feature #25: Fieldstone weir (listed, non-designated significant feature)

Feature #23: Fieldstone weir (listed, non-designated significant feature). No impact to feature anticipated.

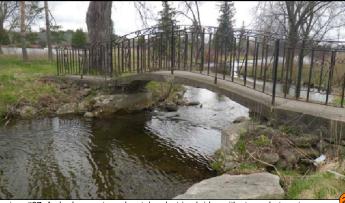
to feature anticipated.

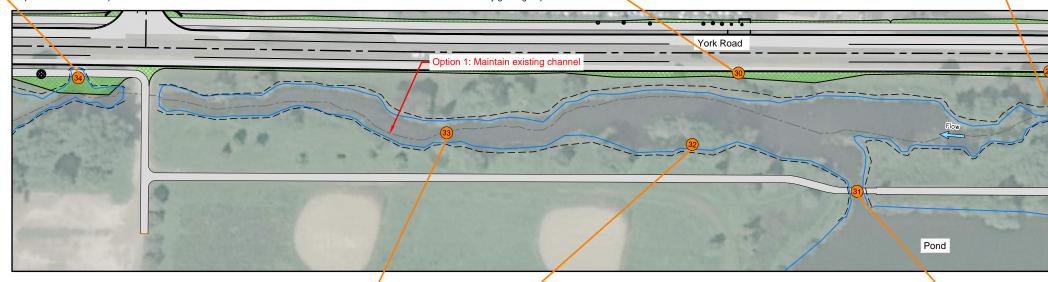
		1:1499.991 15	38 0 Datum	A Division of A Division of Matrix Solutions Inc.		
REVISION						AMEC Foster Wheeler
						York Road Widening
						York Road Improvements
						Clythe Creek Option 1 - Reach C-9B
						Cultural Heritage Feature Impacts
						Date: Project: Technical: Reviewer: Drawn: E. Drost
00	01 17 2017	Issued for client review	JH	JP	ED	Disclaimer: The information contained herein may be compiled from numerous third party materials that are subject to periodic change Figure without prior notification. While every effort has been made by Matrix Solutions Inc. to ensure the accuracy of the information presented at
No.	DATE	DESCRIPTION	BY	CHK.	DRN.	the time of publication. Writing every enormalise been index by walk solutions inc. to ensure the accuracy of the information presented at the time of publication, Matrix Solutions Inc. assumes no liability for any errors, omissions, or inaccuracies in the third party material.

- For full plan and profile design information on Option 1, refer to drawings 06-08.
 Refer to drawing 04 for photos of features
 - 26,27 and 31.

Feature #18: Fieldstone steps to the south of road bridge (listed, non-designated significant feature). No impact to feature anticipated. No impact to feature anticipated.

Feature #19: Entrance sign, ashlar stone with jack arch (potential significance). No impact to feature anticipated.


Feature #17: Stone and concrete road bridge (listed, non-designated significant feature). No impact to feature anticipated. No impact to feature anticipated.


Feature #34 (not considered cultural heritage feature): Box culvert at confluence of Clythe Creek and Hadati Creek. Potential culvert extension to accommodate roadway grading requirement and CSP replacement.

Feature #30: Limestone pillars (potential significance). Potential for feature to be modified as a result of roadway grading requirements.

Feature #27: Arched concrete and metal pedestrian bridge with stone abutments (potential significance). No impact to feature anticipated.

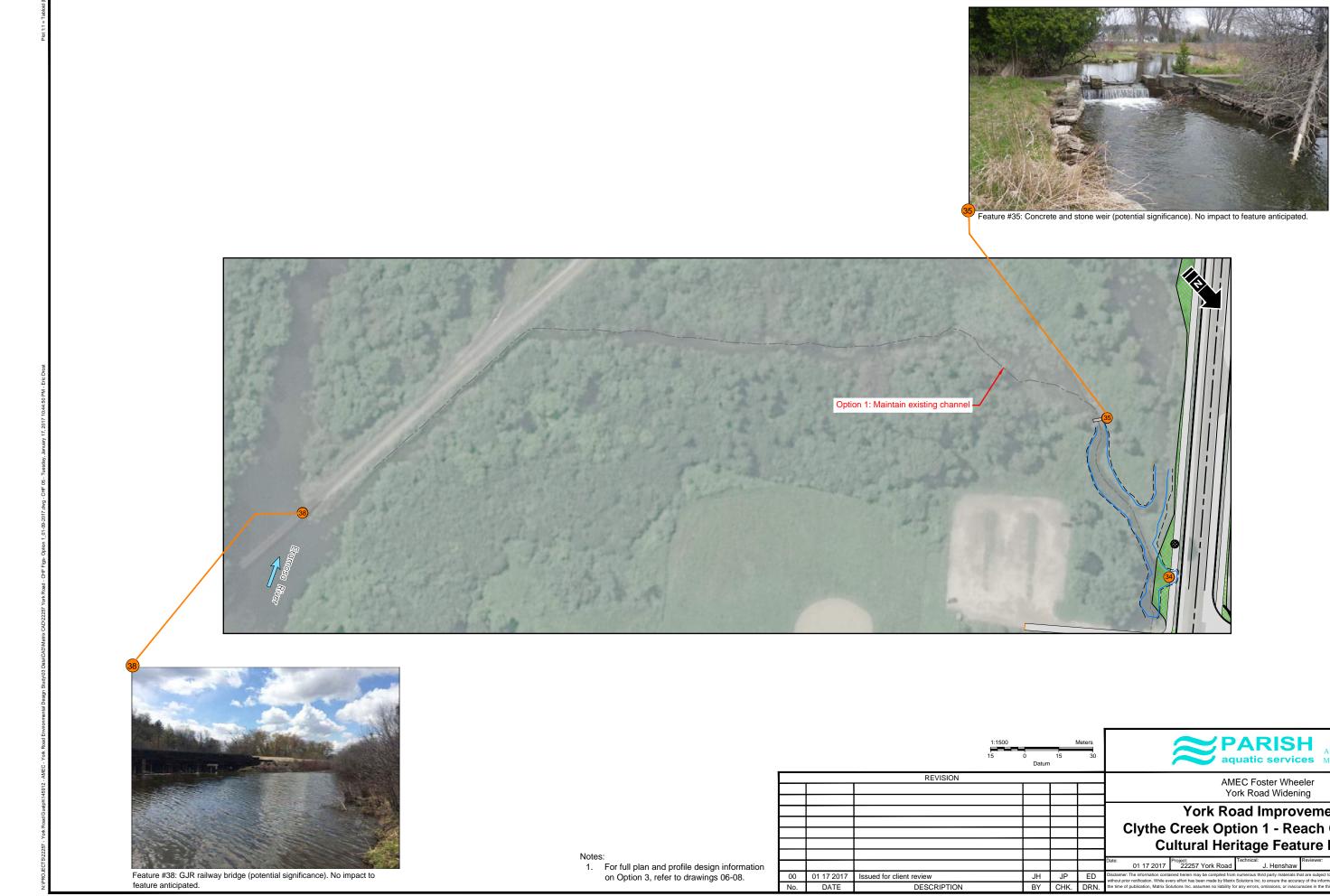
Feature #33: Metal and wood pedestrian bridge (potential significance). No impact to feature anticipated.

to feature anticipated.

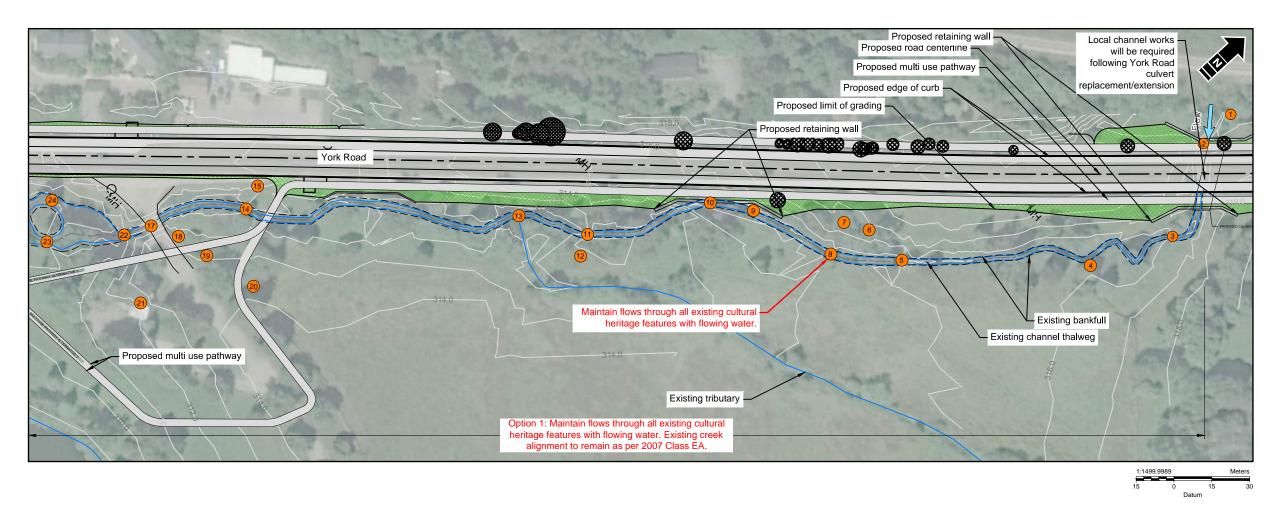
1:1499.	9989	
15	Ó	

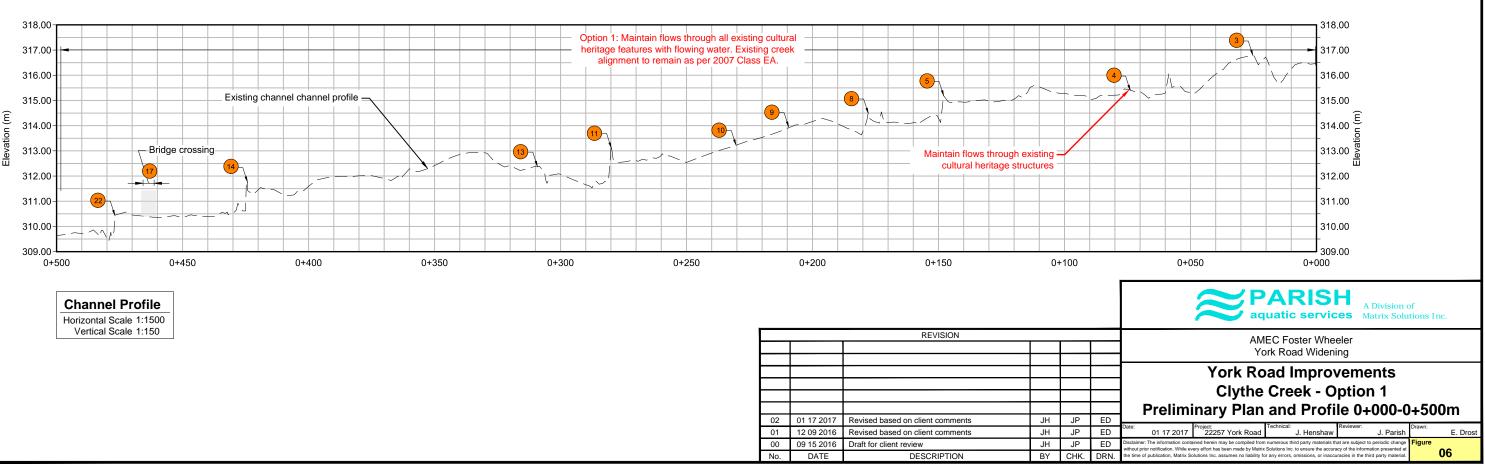
			1:1499.9989 15 0 Datu	15	Meters 30	A Division of Additional Solutions Inc.
		REVISION	Datu			AMEC Foster Wheeler York Road Widening
						York Road Improvements Clythe Creek Option 1 - Reach C-9B Cultural Heritage Feature Impacts
00 No.	01 17 2017 DATE	Issued for client review DESCRIPTION	JH BY	JP CHK.	ED DRN.	Date: 01 17 2017 Project: 22257 York Road Technical: J. Henshaw Reviewer: L. Date: J. Parish Drawn: E. Drost Disclaimer: The information contained herein may be compiled from numerous third party materials that are subject to periodic change wthout prior notification. White every effort has been made by Markit Solutions Inc. to ensure the accuracy of the information presented at the time of publication. Markit Solutions Inc. assume non-biblity for any errors, omissions, or incurvaries in the third party material. Figure 04

For full plan and profile design information on Option 1, refer to drawings 06-08.

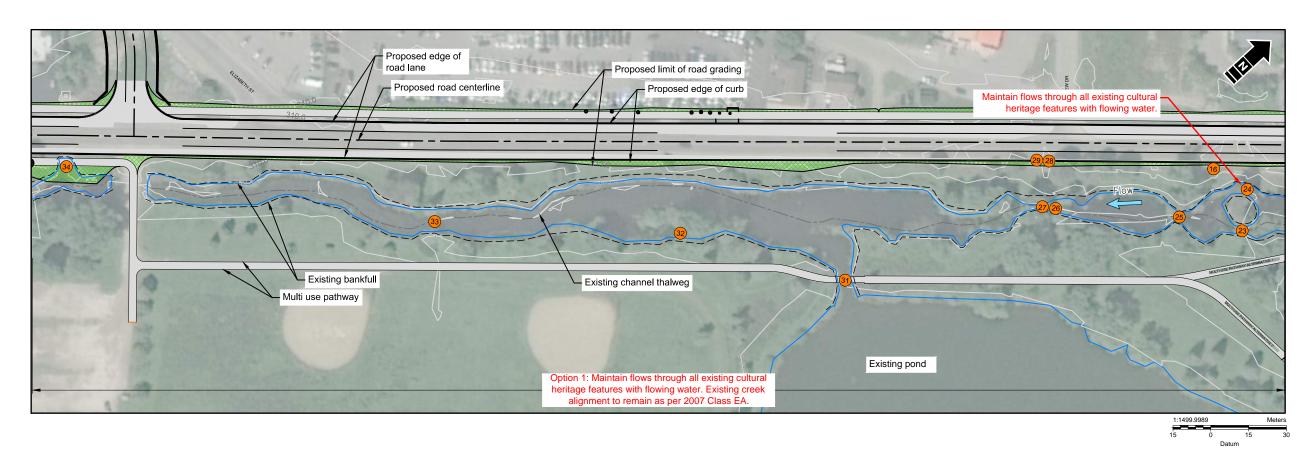


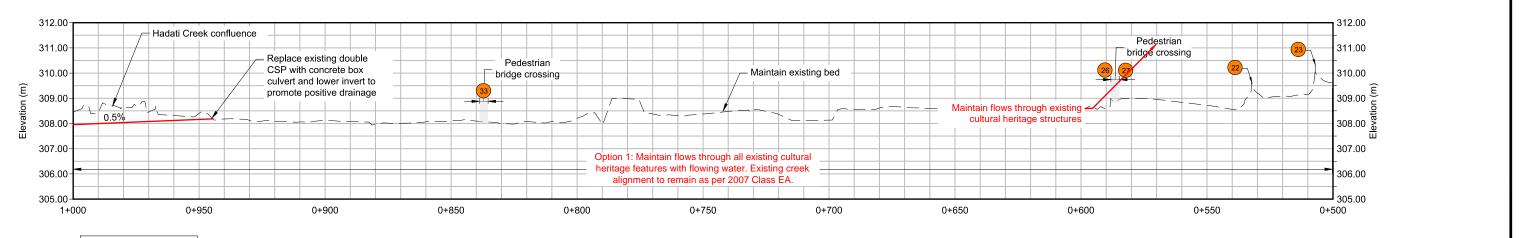
Feature #28 and #29: Limestone pillars with wood board fencing leading to main entrance (potential significance). Potential for feature to be modified as a result of roadway grading requirements.




Feature #26: Fieldstone weir (listed, non-designated significant feature). No impact to feature anticipated.

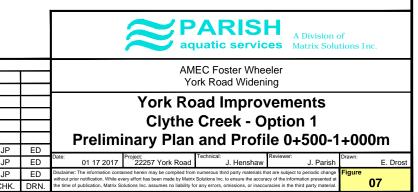
feature to be modified to accommodate pedestrian traffic and multi-use pathway.


Ν	Veters									
15	30	aquatic services Matrix Solutions Inc.								
		AMEC Foster Wheeler York Road Widening								
		York Road Improvements Clythe Creek Option 1 - Reach C-10								
		Cultural Heritage Feature Impacts								
		Date: 01 17 2017 Project: 22257 York Road Technical: Reviewer: J. Parish E. Drost								
JP CHK.	ED DRN.	Declaime: The information contained herein may be compiled from numerous third party materials that are subject to periodic change without prior notification. While every effort has been made by Matrix Solutions Inc. to ensure the accuracy of the information presented at the time of publication. Matrix Solutions Inc. assumes no ballibility for any errors, omissions, or incarcuracies in the third party material.								

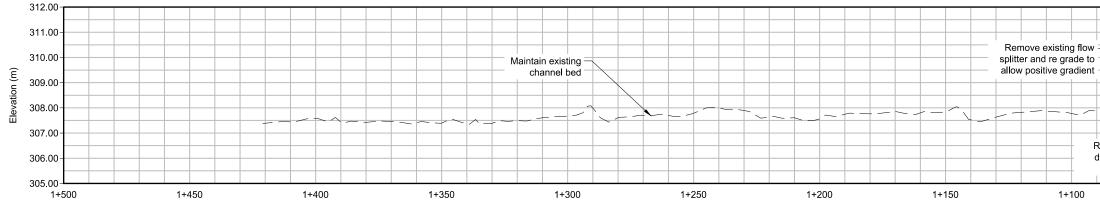


	Legend						
Surveyed channel thalweg							
Surveyed edge of water							
– – – Surveyed bankfull							
	Toe of road grading						
	Fill/grading area						
2 Cultural heritage feature/structure							

- 1. Channel survey completed by Matrix Solutions Inc. on May 2, 3, and 5, 2016.
- 2. Road and property survey completed by others. Air imagery provided by others.
- 3. Features displayed are in UTM Nad 83 Zone 17 coordinate system
- 5. Heritage feature location and
- information provided by others. Bank treatments to be confirmed 6. in detailed design.

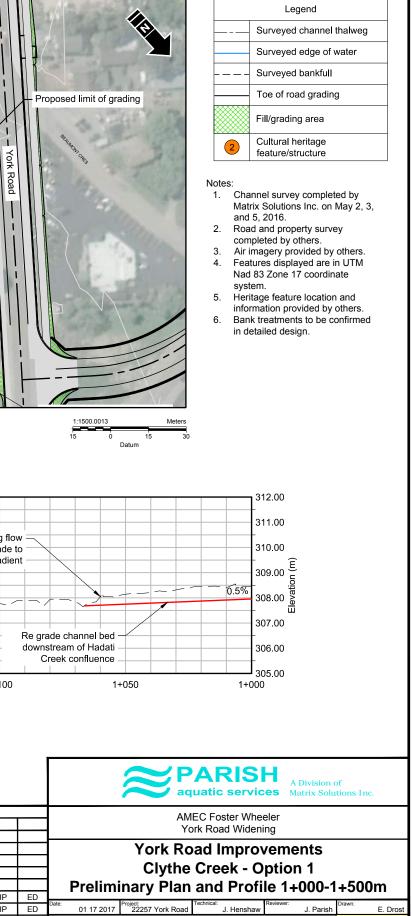


Channel Profile Horizontal Scale 1:1500 Vertical Scale 1:150


		REVISION		
02	01 17 2017	Revised based on client comments	JH	JF
01	12 09 2016	Revised based on client comments	JH	JF
00	09 15 2016	Draft for client review	JH	JF
No.	DATE	DESCRIPTION	BY	CH

	Legend						
Surveyed channel thalweg							
Surveyed edge of water							
– – – Surveyed bankfull							
	Toe of road grading						
	Fill/grading area						
Cultural heritage feature/structure							

- 1. Channel survey completed by Matrix Solutions Inc. on May 2, 3, and 5, 2016.
- Road and property survey completed by others.
 Air imagery provided by others.
- Air imagery provided by others.
 Features displayed are in UTM Nad 83 Zone 17 coordinate
- system.5. Heritage feature location and
- information provided by others.6. Bank treatments to be confirmed
- in detailed design.



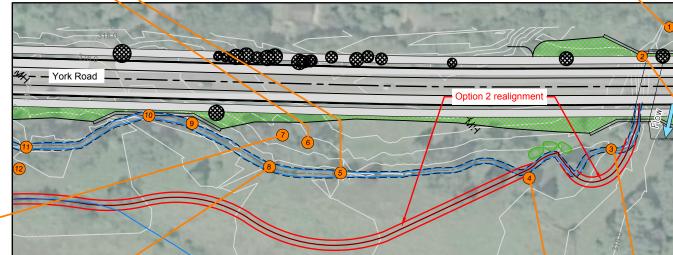
Channel Profile				
Horizontal Scale 1:1500				
Vertical Scale 1:150				

		REVISION			
02	01 17 2017	Revised based on client comments	JH	JP	ED
01	12 09 2016	Revised based on client comments	JH	JP	ED
00	09 15 2016	Draft for client review	JH	JP	ED
No.	DATE	DESCRIPTION	BY	CHK.	DRN.

aimer: The information contained herein may be compiled from numerous th out prior notification. While every effort has been made by Matrix Solutions Inc ime of publication, Matrix Solutions Inc. assumes no liability for any errors,

08

ies in the third


Feature #6: Fieldstone steps (listed, non-designated significant feature). No impact to feature anticipated.

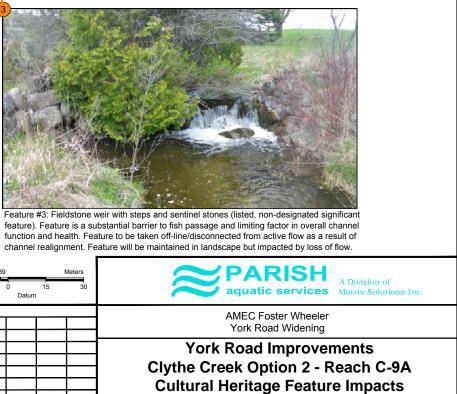
Feature #5: Fieldstone weir with clay pipes (listed, non-designated significant feature). No impact to feature anticipated. Feature is a substantial barrier to fish passage and limiting factor in overall channel function and health. Feature to be taken off-line/disconnected from active flow as a result of channel realignment. Feature will be maintained in landscape but impacted by loss of flow.

Feature #7: Large boulder or bedrock outcrop (potential significance). No impact to feature anticipated.

Feature #8: Fieldstone weir (listed, non-designated significant feature). No impact to feature anticipated. Feature is a substantial barrier to fish passage and limiting factor in overall channel function and health. Feature to be taken off-line/disconnected from active flow as a result of channel realignment. Feature will be maintained in landscape but will be impacted from loss of flow.

Feature #4: Fieldstone garden wall with sentinels (listed, non-designated significant feature). No impact to feature anticipated.

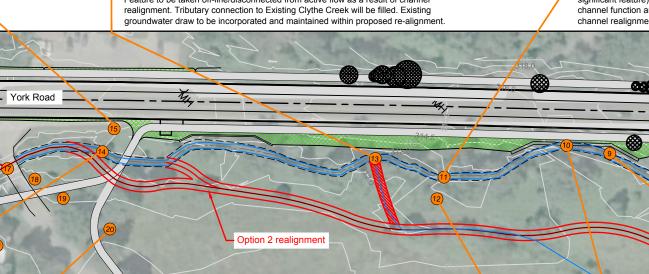
			Datum				
		REVISION			AMEC Foster Wheeler		
						York Road Widening	
						York Road Improvements	
						•	
						Clythe Creek Option 2 - Reach C-9A	
						Cultural Heritage Feature Impacts	
						J 1	
						Date: Project: Technical: Reviewer: Drawn: 22257 York Road J. Henshaw J. Parish E. Drost	
00	01 17 2017	Issued for client review	JH	JP	ED	Disclaimer: The information contained herein may be compiled from numerous third party materials that are subject to periodic change Figure without prior notification. While every effort has been made by Matrix Solutions Inc. to ensure the accuracy of the information presented at	
No.	DATE	DESCRIPTION	BY	CHK.	DRN.	the time of publication. Write every error has been made by wattix Solutions inc. to ensure the accuracy of the minimization presented at the time of publication, Matrix Solutions Inc. assumes no liability for any errors, omissions, or inaccuracies in the third party material.	


- 1. Refer to drawing 02 for photos of features 9, 10, 11 and 12.
- For full plan and profile design information on Option 2, refer to drawings 06-08.

Feature #1: Ashlar stone culvert (potential significance). No impact to feature anticipated.

Feature #2: Reinforced concrete road bridge railing (potential significance). Feature to be modified to accommodate road widening works.

non-designated significant feature). No impact to feature anticipated.



Feature #14: Fieldstone weir with cut stone terrace wall (listed, non-designated significant feature). Feature is a substantial barrier to fish passage and limiting factor in overall channel function and health. Feature to be taken off-line/disconnected from active flow as a result of channel realignment and maintained within landscape. Potential for overflow channel to reconnect feature during times of high-flow.

Feature #20: Ashlar dry stone wall (listed, non-designated significant feature). No impact to feature anticipated.

Feature #12: Ashlar limestone wall (listed, non-designated significant feature). Part of feature impacted by proposed creek realignment.

				1:1499.999		N	Vieters	
_				15 0	Datum	15	30	aquatic services Matrix Solutions Inc.
			REVISION					AMEC Foster Wheeler York Road Widening
								York Road Improvements
								Clythe Creek Option 2 - Reach C-9A
								Cultural Heritage Feature Impacts
								Date: Project: Technical: Reviewer: Date: 01 17 2017 22257 York Road J. Henshaw J. Parish E. Drost
	00	01 17 2017	Issued for client review		JH	JP	ED	Disclaimer: The information contained herein may be compiled from numerous third party materials that are subject to periodic change Figure without prior notification. While every effort has been made by Matrix Solutions Inc. to ensure the accuracy of the information presented at
	No.	DATE	DESCRIPTION		BY	CHK.	DRN.	without prior holification. While every effort has been made by Matrix Solutions inc. to ensure the accuracy of the information presented at the time of publication, Matrix Solutions Inc. assumes no liability for any errors, omissions, or inaccuracies in the third party material.

Notes:

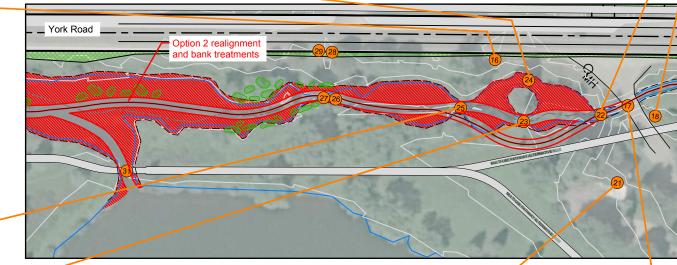
- 1. For full plan and profile design information
- on Option 2, refer to drawings 06-08.Refer to drawing 03 for photos of features
- 17, 18,19 and 21.

Feature #11: Fieldstone weir with steps and ashlar stone terrace wall (listed, non-designated significant feature). Feature is a substantial barrier to fish passage and limiting factor in overall channel function and health. Feature to be taken off-line/disconnected from active flow as a result of channel realignment. Feature will be maintained in landscape but will be impacted by loss of flow.

Feature #9: Fieldstone weir (listed, non-designated significant feature). No impact to feature anticipated. Feature is a substantial barrier to fish passage and limiting factor in overall channel function and health. Feature to be taken of-line as a result of channel realignment. Feature will be maintained in landscape but will be impacted by loss of flow.

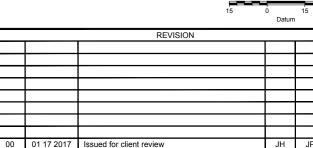
Feature #10: Fieldstone weir (listed, non-designated significant feature). No impact to feature anticipated. Feature is a substantial barrier to fish passage and limiting factor in overall channel function and health. Feature to be taken off-line/disconnected from active flow as a result of channel realignment. Feature will be maintained in landscape but will be impacted by loss of flow.

Feature #16: Fieldstone west entrance wall with sentinel stones (listed, non-designated significant feature). Potential for feature to be modified as a result of roadway grading requirements.


Feature #24: Fieldstone weir (listed, non-designated significant feature). Feature is a substantial barrier to fish passage and limiting factor in overall channel function and health. Feature to be taken off-line/disconnected from active flow as a result of proposed channel works. Potential for feature to be impacted as a result of required grading/fill as a result of proposed channel works.

Feature #22: Fieldstone weir (listed, non-designated significant feature). No impact to feature anticipated.

Feature #25: Fieldstone weir (listed, non-designated significant feature). Feature is a substantial barrier to fish passage and limiting factor in overall channel function and health. Feature will require modification or removal (confirmed during detailed design) as a result of channel works.



Feature #23: Fieldstone weir (listed, non-designated significant feature). Feature is a substantial barrier to fish passage and limiting factor in overall channel function and health. Feature will require modification or removal (confirmed during detailed design) as a result of channel works.

Feature #21: Willowbank Hall (listed, non-designated significant feature). No impact to feature anticipated.

No. DATE

DESCRIPTION

Notes:

- 1. For full plan and profile design information on Option 2, refer to drawings 06-08.
- 2. Refer to drawing 04 for photos of features
- 26,27 and 31.

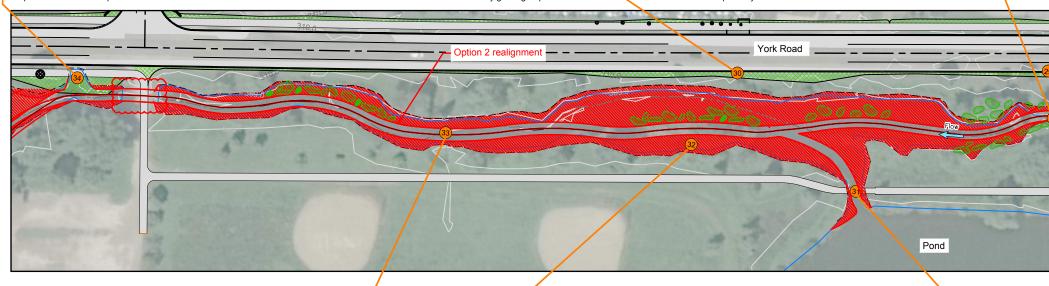
BY C

Feature #18: Fieldstone steps to the south of road bridge (listed, non-designated significant feature). No impact to feature anticipated. No impact to feature anticipated.

significance). No impact to feature anticipated.

Feature #17: Stone and concrete road bridge (listed, non-designated significant feature). No impact to feature anticipated, existing capacity dimensions to be maintained.

15	Meters 30	A Division of A Division of Matrix Solutions Inc.
		AMEC Foster Wheeler York Road Widening
		York Road Improvements Clythe Creek Option 2 - Reach C-9B
		Cultural Heritage Feature Impacts
		Date: 01 17 2017 Project: Technical: Reviewer: Drawn: 22257 York Road J. Henshaw J. Parish E. Drost
JP	ED	Disclaimer: The information contained herein may be compiled from numerous third party materials that are subject to periodic change Figure
CHK.	DRN.	the time of publication, Matrix Solutions Inc. assumes no liability for any errors, omissions, or inaccuracies in the third party material.


Feature #34 (not considered cultural heritage feature): Box culvert at confluence of Clythe Creek and Hadati Creek. Potential culvert extension to accommodate roadway grading requirement and CSP replacement.

Feature #30: Limestone pillars (potential significance). Potential for feature to be modified as a result of roadway grading requirements.

Feature #27: Arched concrete and metal pedestrian bridge with stone abutments (potential significance). Potential for feature to be modified to accommodate pedestrian traffic and multi-use pathway.

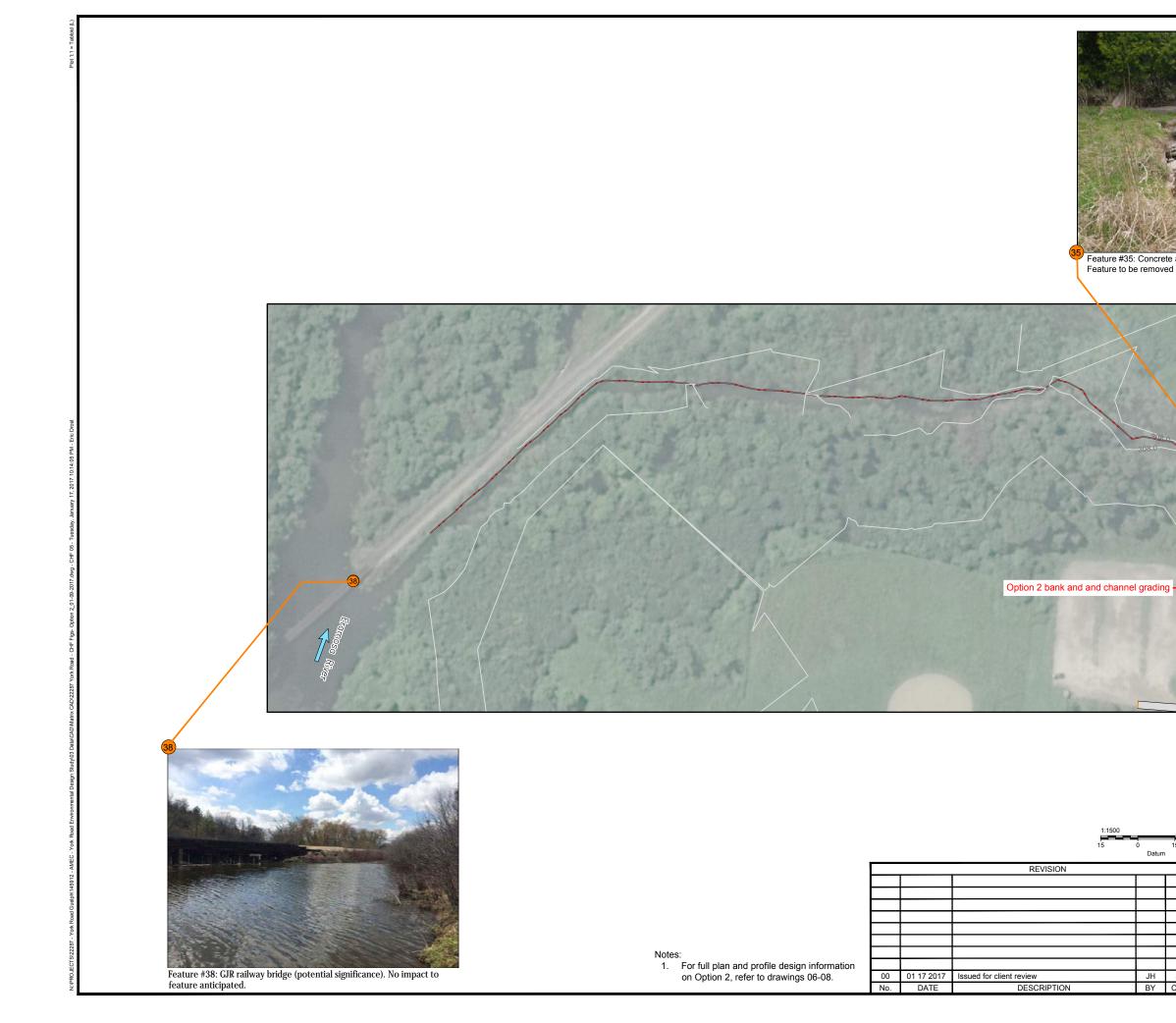
Feature #33: Metal and wood pedestrian bridge (potential significance). No impact to feature anticipated. Potential for feature to be modified to accommodate pedestrian traffic and multi-use pathway.

be removed as a result of proposed channel works.

		1:1499.9985 	0 Datum	15	Meters 30	A Division of A Division of Matrix Solutions Inc.
		REVISION				AMEC Foster Wheeler York Road Widening
						York Road Improvements Clythe Creek Option 2 - Reach C-9B Cultural Heritage Feature Impacts
						Date: Project: Technical: Reviewer: Date: 01 17 2017 22257 York Road J. Henshaw J. Parish E. Drost
00 No.	01 17 2017 DATE	Issued for client review DESCRIPTION	JH BY	JP CHK.	ED DRN.	Disclaimer: The information contained herein may be complied from numerous third party materials that are subject to periodic chances Historu prior ordification. While every effort has been made by Matrix Solutions In: to ensure the accuracy of the information presented at the time of publication, Matrix Solutions Inc. assumes no liability for any errors, omissions, or inaccuracies in the third party material. 04

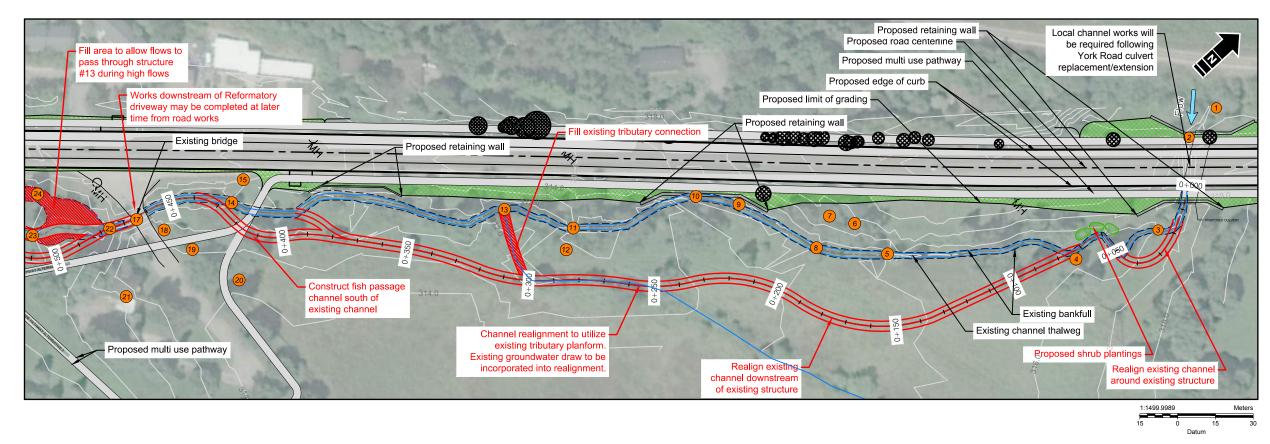
Notes:

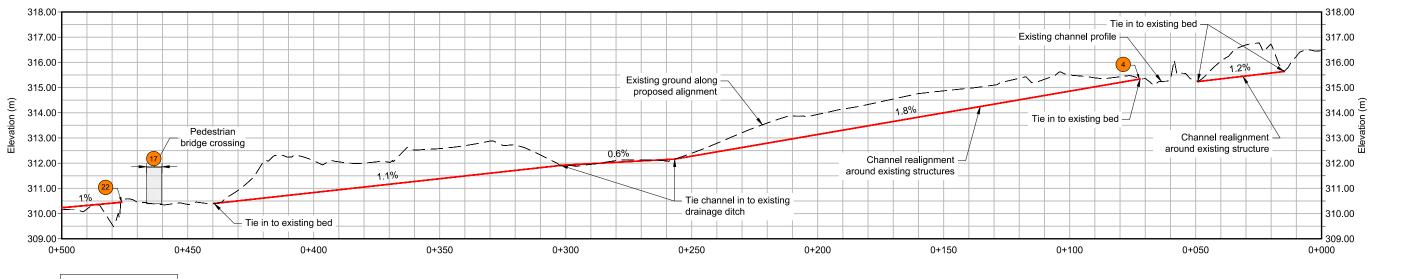
For full plan and profile design information on Option 2, refer to drawings 06-08.


Feature #28 and #29: Limestone pillars with wood board fencing leading to main entrance (potential significance). Potential for feature to be modified as a result of roadway grading requirements.

Feature #26: Fieldstone weir (listed, non-designated significant feature). Feature is a substantial barrier to fish passage and limiting factor in overall channel function and health. Feature will require modification or removal (confirmed during detailed design) as a result of channel works.

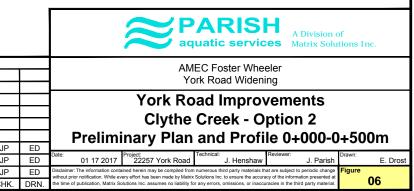
Feature #31: Metal and wooden pedestrian bridge (potential significance). Potential for feature to be modified to accommodate pedestrian traffic and multi-use pathway.

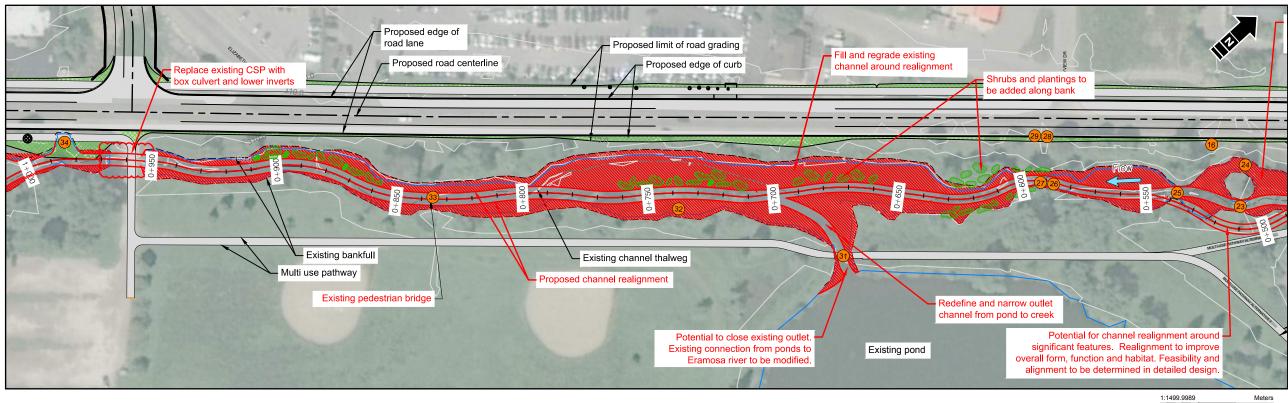


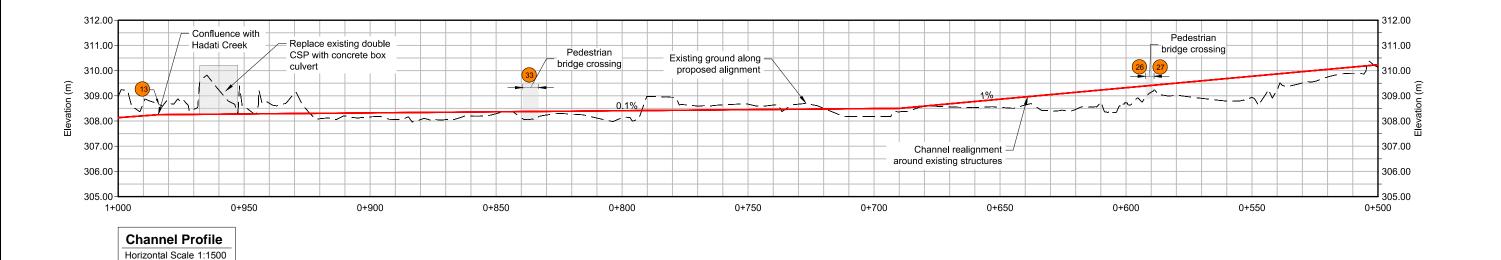


Feature #35: Concrete and stone weir (potential significance). Feature to be removed as a result of proposed channel works.

15	Meters 30	A Division of A Division of Matrix Solutions Inc.
		AMEC Foster Wheeler York Road Widening
		York Road Improvements Clythe Creek Option 2 - Reach C-10 Cultural Heritage Feature Impacts
		Date: Project: Technical: Reviewer: Drawn: 22257 York Road J. Henshaw J. Parish E. Drost
JP CHK.	ED DRN.	Discianer: The information contained herein may be complied from numerous third party materials that are subject to periodic change without prior notification. While every effort has been made by Matrix Solutions inc. to ensure the accuracy of the information presented at the time of publication. Matrix Solutions inc. assumes no isolabily for any errors, ornisacions, or inaccuracies in the time of publication. Matrix Solutions inc. assumes no isolabily for any errors, ornisacions, or inaccuracies in the time of publication.




Channel Profile
Horizontal Scale 1:1500
Vertical Scale 1:150

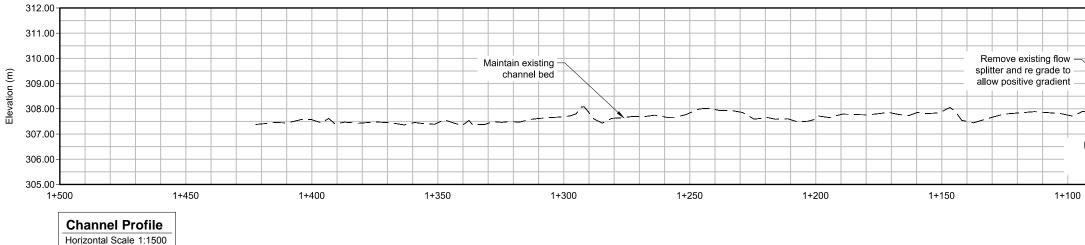

		REVISION		
02	01 17 2017	Revised based on client comments	JH	JP
01	12 09 2016	Revised based on client comments	JH	JP
00	09 15 2016	Draft for client review	JH	JP
No.	DATE	DESCRIPTION	BY	CH

	Legend						
Surveyed edge of water							
Surveyed bankfull							
	Toe of road grading						
	Proposed realignment						
	Proposed fill/bank treatment						
0	Proposed shrubs and plantings						
2	Cultural heritage feature/structure						

- 1. Channel survey completed by Matrix Solutions Inc. on May 2, 3, and 5, 2016.
- 2. Road and property survey completed by others.
- 3. Air imagery provided by others.
- Features displayed are in UTM Nad 83 Zone 17 coordinate system.
- 5. Heritage feature location and information provided by others.
- 6. Bank treatments to be confirmed in detailed design.

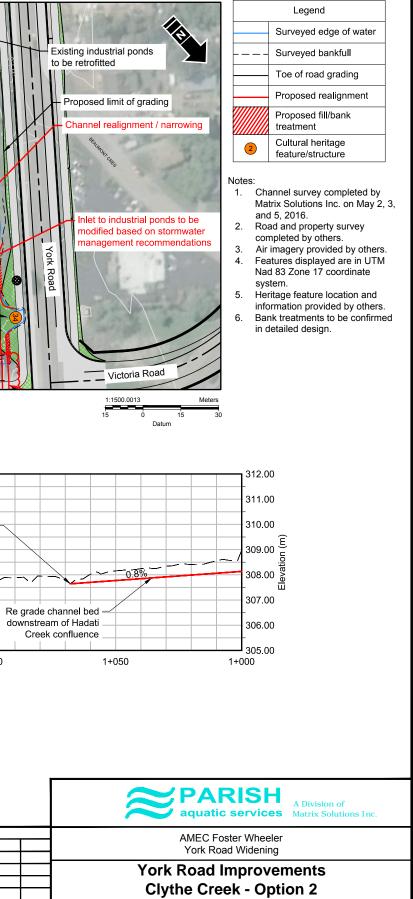
		REVISION		
02	01 17 2017	Revised based on client comments	JH	J
01	12 09 2016	Revised based on client comments	JH	J
00	09 15 2016	Draft for client review	JH	J
No.	DATE	DESCRIPTION		Cŀ


Vertical Scale 1:150


1:1499.9	9989		Meters
5	0	15	30
		Datum	

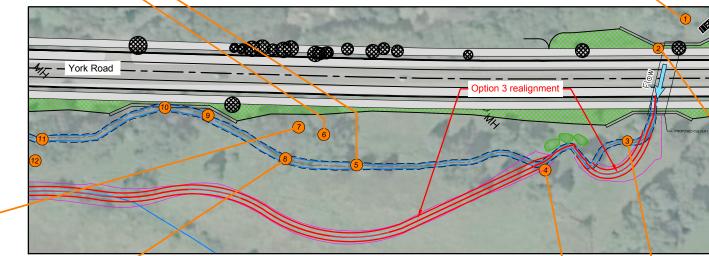
	Legend					
Surveyed edge of water						
– – – – Surveyed bankfull						
	Toe of road grading					
	Proposed realignment					
	Proposed fill/bank treatment					
0	Proposed shrubs and plantings					
2	Cultural heritage feature/structure					

- 1. Channel survey completed by Matrix Solutions Inc. on May 2, 3, and 5, 2016.
- 2. Road and property survey completed by others.
- Air imagery provided by others.
 Features displayed are in UTM Nad 83 Zone 17 coordinate system.
- Heritage feature location and 5. information provided by others.
- 6. Bank treatments to be confirmed in detailed design.



ſ			REVISION		AMEC Foster Wheeler		
ŀ							York Road Widening
							York Road Improvements Clythe Creek - Option 2
ļ							Preliminary Plan and Profile 1+000-1+500m
ŀ	02 01	01 17 2017	Revised based on client comments Revised based on client comments	JH JH	JP JP	ED ED	Date: 01 17 2017 Project Technical: Reviewer: Drawn: 01 17 2017 22257 York Road J. Henshaw J. Parish E. Drost
ŀ	00	09 15 2016	Draft for client review	JH	JP	ED	Disclaimer: The information contained herein may be compiled from numerous third party materials that are subject to periodic change Figure
	No.	DATE	DESCRIPTION	BY	CHK.	DRN.	the time of publication. Matrix Solutions Inc. assumes no liability for any errors, omissions, or inaccuracies in the third party material.

Vertical Scale 1:150


Feature #6: Fieldstone steps (listed, non-designated significant feature). Feature is located within the floodplain and will not be impacted by proposed channel works.

Feature #5: Fieldstone weir with clay pipes (listed, non-designated significant feature). Feature is a substantial barrier to fish passage and limiting factor in overall channel function and health. Feature to be taken off-line and disconnected from active flow as a result of channel realignment. Feature will be maintained in the landscape.

Feature #7: Large boulder or bedrock outcrop (potential significance). Feature is located within the floodplain and will not be impacted by proposed channel works.

Feature #8: Fieldstone weir (listed, non-designated significant feature). Feature is a substantial barrier to fish passage and limiting factor in overall channel function and health. Feature to be taken off-line and disconnected from active flow as a result of channel realignment. Feature will be maintained in the landscape.

Feature #4: Fieldstone garden wall with sentinels (In In order to maintain the feature, the existing channe within the floodplain and will not be impacted by pro-

 s (listed, non-designated significant feature). nnel planform will be utilized. As the feature is proposed channel works. 			ized. As the feature is	1:1499.9989 15 0 Datum	15	Veters 30	A Division of A Division of Matrix Solutions Inc.
			REVISION				AMEC Foster Wheeler York Road Widening
							York Road Improvements Clythe Creek Option 3 - Reach C-9A Cultural Heritage Feature Impacts
	01	03 08 2017	Revised based on client comments	JH	JP	ED	Date: 03 08 2017 Project: 22257 York Road Technical: Reviewer: J. Parish Drawn: E. Drost
	00 No.	01 17 2017 DATE	Issued for client review DESCRIPTION	JH BY	JP CHK.	ED DRN.	Declaram: The information contained herein may be compiled from numerous third party materials that are subject to periodic charge. Figure whole you for indication. While every forth has been made by Matrix Solutions. I.e. o snare the excurpt of the information presented at the time of publication, Matrix Solutions Inc. assumes no liability for any errors, omissions, or inaccuracies in the third party material. 01

Notes:

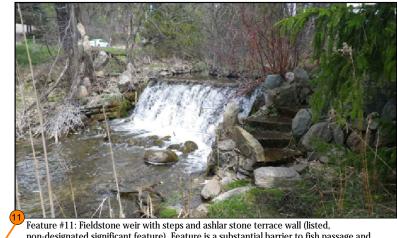
- 1. Refer to drawing 02 for photos of features 9, 10, 11 and 12.
- For full plan and profile design information on Option 3, refer to drawings 06-08.

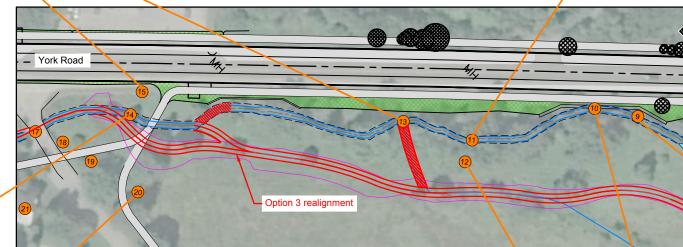
Feature #1: Ashlar stone culvert (potential significance). Channel works are not proposed upstream from York Road therefore the feature will not be impacted by proposed channel works.

Feature #2: Reinforced concrete road bridge railing (potential significance). No impact to feature anticipated as a result of proposed channel works.

Feature #3: Fieldstone weir with steps and sentinel stones (listed, non-designated significant feature 3. Feature is a substantial barrier to fish passage and limiting factor in overall channel function and health. Feature to be taken off-line and disconnected from active flow as a result of channel realignment. Feature will be maintained in the landscape.

Feature #15: Fieldstone east entrance wall with sentinel stones (listed, non-designated significant feature). No impact to feature anticipated as a result of proposed channel works.


Feature #14: Fieldstone weir with cut stone terrace wall (listed, non-designated significant feature). Feature is a substantial barrier to fish passage and limiting factor in overall channel function and health. Feature to be taken off-line and disconnected during low-flow stages. An overflow channel will be incorporated so that the feature will be reconnected during high-flow stages (i.e., flows greater than the 2yr discharge).


Feature #20: Ashlar dry stone wall (listed, non-designated significant feature). Feature is located within the floodplain and will not be impacted by proposed channel works.

Feature #13: Confluence of Clythe Creek and intermittent stream (potential significance). Feature will be 'filled' and the floodplain restored to uniform elevation. The proposed channel alignment utilizes a local section of the intermittent streams planform, as a result existing groundwater draw will be maintained within proposed re-alignment.

Feature #11: Fieldstone weir with steps and ashlar stone terrace wall (listed, non-designated significant feature). Feature is a substantial barrier to fish passage and limiting factor in overall channel function and health. Feature to be taken off-line and disconnected from active flow as a result of channel realignment. Feature will be maintained in the landscape.

Feature #12: Ashlar limestone wall (listed, non-designated significant feature). Feature is located within the floodplain and will not be impacted by proposed channel works.

works.								
	1:1499.99 15	ò	15	Meters 30	A Division of A Division of Matrix Solutions Inc.			
REVISION					AMEC Foster Wheeler			
				York Road Widening				
					York Road Improvements			
					Clythe Creek Option 3 - Reach C-9A			
					Cultural Heritage Feature Impacts			
					Date: Project: Technical: Reviewer: Drawn:			
03 08 2017	Revised based on client comments	JH	JP	ED	Date: 03 08 2017 Project: Technical: Reviewer: Drawn: 22257 York Road J. Henshaw J. Parish Drawn: E. Drost			
01 17 2017	Issued for client review	JH	JP	ED	Disclaimer: The information contained herein may be compiled from numerous third party materials that are subject to periodic change Figure without prior notification. While every effort has been made by Matrix Solutions Inc. to ensure the accuracy of the information presented at			
DATE	DESCRIPTION	BY	CHK.	DRN.	the time of publication. While every error has been made by Matrix Solutions inc. to ensure the accuracy of the information presented at the time of publication, Matrix Solutions Inc. assumes no liability for any errors, omissions, or inaccuracies in the third party material.			
	03 08 2017 01 17 2017	1:1499.995 15 REVISION 0	1:1499.999 15 0 REVISION 0	REVISION IS 15 0 15 Datum REVISION I <th <="" colspan="2" td="" th<=""><td>Image: Image: Im</td></th>	<td>Image: Image: Im</td>		Image: Im	

Notes:

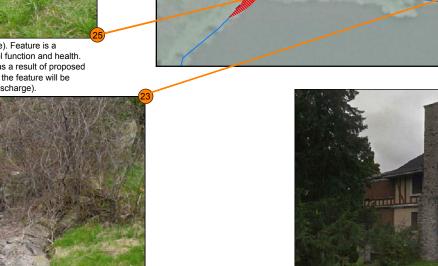
- 1. For full plan and profile design information
- on Option 3, refer to drawings 06-08.Refer to drawing 03 for photos of features
- 17, 18,19 and 21.

Feature #9: Fieldstone weir (listed, non-designated significant feature). Feature is a substantial barrier to fish passage and limiting factor in overall channel function and health. Feature to be taken of-line and disconnected from active flow as a result of channel realignment. A retaining wall will be installed in order for the feature to be maintained in the landscape.

Feature #10: Fieldstone weir (listed, non-designated significant feature). Feature is a substantial barrier to fish passage and limiting factor in overall channel function and health. Feature to be taken of-line and disconnected from active flow as a result of channel realignment. A retaining wall will be installed in order for the feature to be maintained in the landscape.

Feature #16: Fieldstone west entrance wall with sentinel stones (listed, non-designated significant feature). No impact to feature anticipated as a result of proposed channel works.

Feature #24: Fieldstone weir (listed, non-designated significant feature). Feature is a substantial barrier to fish passage and limiting factor in overall channel function and health. Feature to be taken off-line and disconnected during low-flow stages as a result of proposed channel realignment. An overflow channel will be incorporated so that the feature will be reconnected during high-flow stages (i.e., flows greater than the 2yr discharge).


Option 3 realignment and bank treatment

Feature #22: Fieldstone weir (listed, non-designated significant feature). Feature will require modification as a result of proposed channel realignment. Proposed channel realignment will require a "tie-in" location immediately downstream from Feature 17. Full extent of proposed modification to be confirmed during detailed design.

Feature #25: Fieldstone weir (listed, non-designated significant feature). Feature is a substantial barrier to fish passage and limiting factor in overall channel function and health. Feature to be taken off-line and disconnected during low-flow stages as a result of proposed channel realignment. An overflow channel will be incorporated so that the feature will be reconnected during high-flow stages (i.e., flows greater than the 2yr discharge).

Feature #23: Fieldstone weir (listed, non-designated significant feature). Feature is a substantial barrier to fish passage and limiting factor in overall channel function and health. Feature to be taken off-line and disconnected during low-flow stages as a result of proposed channel realignment. An overflow channel will be incorporated so that the feature will be reconnected during high-flow stages (i.e., flows greater than the 2yr discharge).

Feature #21: Willowbank Hall (listed, non-designated significant feature). Feature is located within the floodplain and will not be impacted by proposed channel works.

01 03 08 2017

00 01 17 2017 No. DATE

,	1:1499.9988 	15	Meters 30	A Division of aquatic services A Division of Matrix Solutions Inc.
REVISION				AMEC Foster Wheeler York Road Widening
				York Road Improvements Clythe Creek Option 3 - Reach C-9B Cultural Heritage Feature Impacts
Revised based on client comments	JH	JP	ED	Date: 03 08 2017 Project: Technical: Reviewer: Drawn: E. Drost
Issued for client review DESCRIPTION	JH BY	JP CHK.	ED DRN.	Dasclaime: The information contained herein may be compiled from numerous third party materials that are subject to periodic charge. Figure without prior indification. While every effort has been made by Matrix Solutions inc. to ensure the accuracy of the information presented at the time of publication. Matrix Solutions Inc. assumes no liability for any errors, omissions, or inaccuracies in the third party material. 03

Notes:

1. For full plan and profile design information on Option 3, refer to drawings 06-08.

York Road -

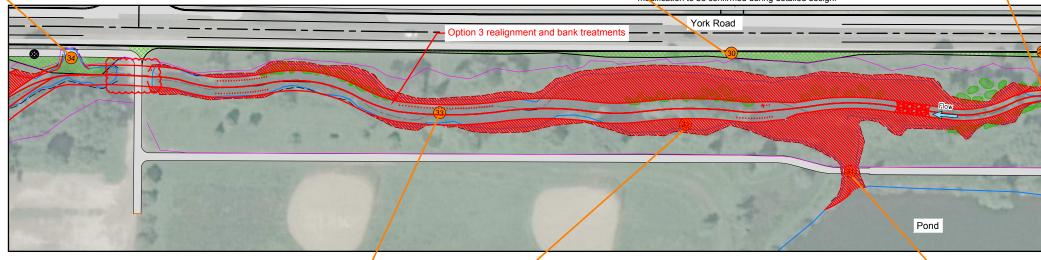
2. Refer to drawing 04 for photos of features
 2. and 24

26,27 and 31.

Feature #18: Fieldstone steps to the south of road bridge (listed, non-designated significant feature). Feature is located within the floodplain and will not be impacted by proposed channel works.

Feature #19: Entrance sign, ashlar stone with jack arch (potential significance). Feature is located within the floodplain and will not be impacted by proposed channel works.

Feature #17: Stone and concrete road bridge (listed, non-designated significant feature). No impact to feature anticipated as a result of proposed channel works, existing capacity dimensions to be maintained.


Feature #34: Confluence of Clythe Creek and Hadati Creek (potential significance). Potential impact to culvert outlet to accommodate roadway grading requirement and CSP replacement.

Feature #30: Limestone pillars (potential significance). No impact to feature anticipated as a result of proposed channel works.

Feature #27: Arched concrete and metal pedestrian bridge with stone abutments (potential significance). Potential for feature abutments to be modified as a result of proposed channel works. The proposed channel will require a "tie-in" location in the vicinity of the abutments both upstream and downstream. Full extent of proposed modification to be confirmed during detailed design.

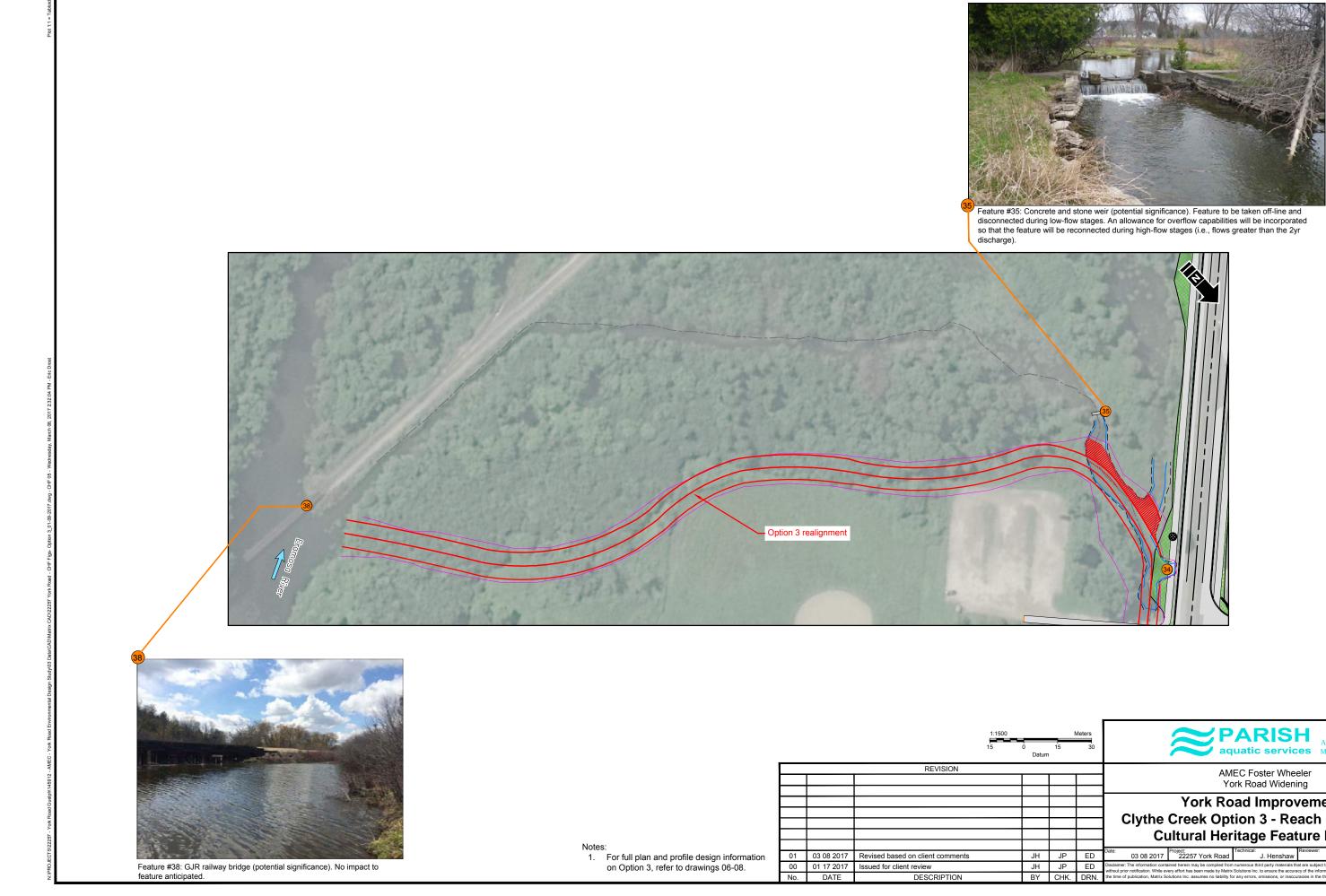
Feature #33: Metal and wood pedestrian bridge (potential significance). Potential for feature to be modified or removed as a result of proposed channel works.

likely to be modified or removed as a result of proposed channel works.

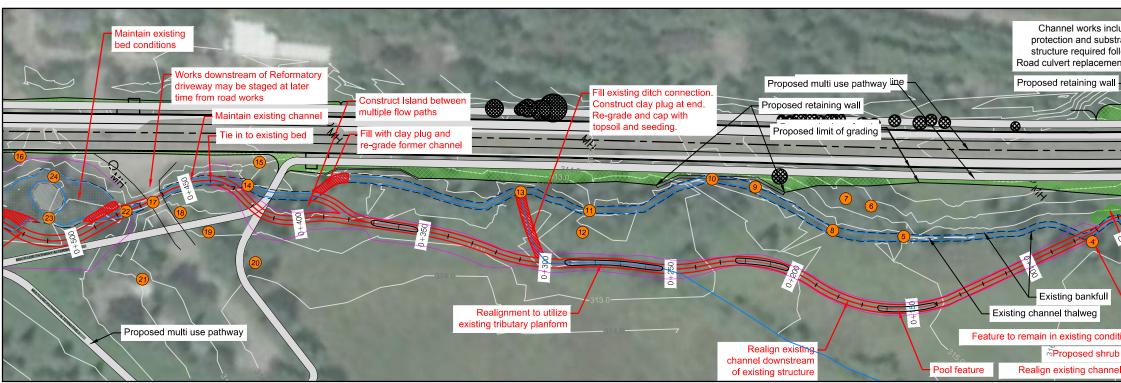
1:1499.	9989	
15	0	

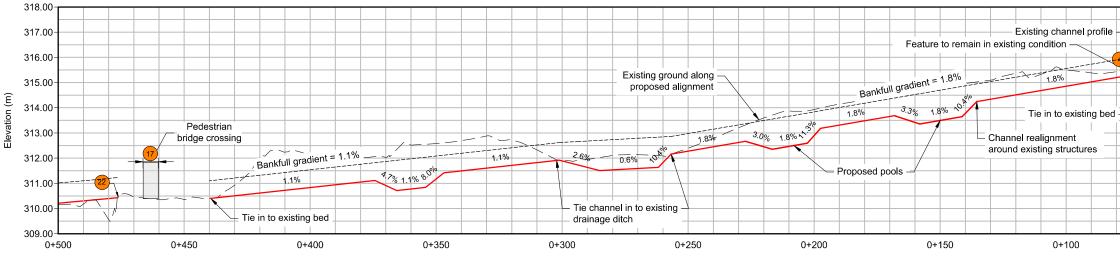
			1:1499.996 15	89 0 Datum	15	Meters 30	A Division of A Division of Matrix Solutions Inc.		
REVISION					AMEC Foster Wheeler York Road Widening				
							York Road Improvements Clythe Creek Option 3 - Reach C-9B		
F							Cultural Heritage Feature Impacts		
ŀ	01	03 08 2017	Revised based on client comments	JH	JP	ED	Date: Project: Technical: Reviewer: Drawn: 22257 York Road J. Henshaw J. Parish E. Drost		
ſ	00	01 17 2017	Issued for client review	JH	JP	ED	Disclaimer: The information contained herein may be compiled from numerous third party materials that are subject to periodic change without prior notification. While every effort has been made by Matrix Solutions Inc. to ensure the accuracy of the information presented at the time of nubiterion. Matrix Solutions Inc. assumes one ibility for any enverse on sistence or incorrunciate in the third next materials at 04		
	No.	DATE	DESCRIPTION	BY	CHK.	DRN.	the time of publication, Matrix Solutions Inc. assumes no liability for any errors, omissions, or inaccuracies in the third party material.		

For full plan and profile design information on Option 3, refer to drawings 06-08.

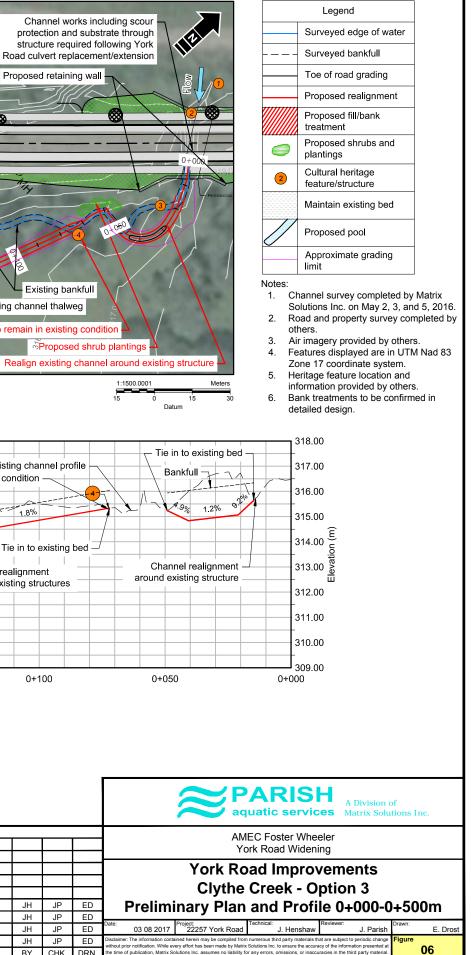


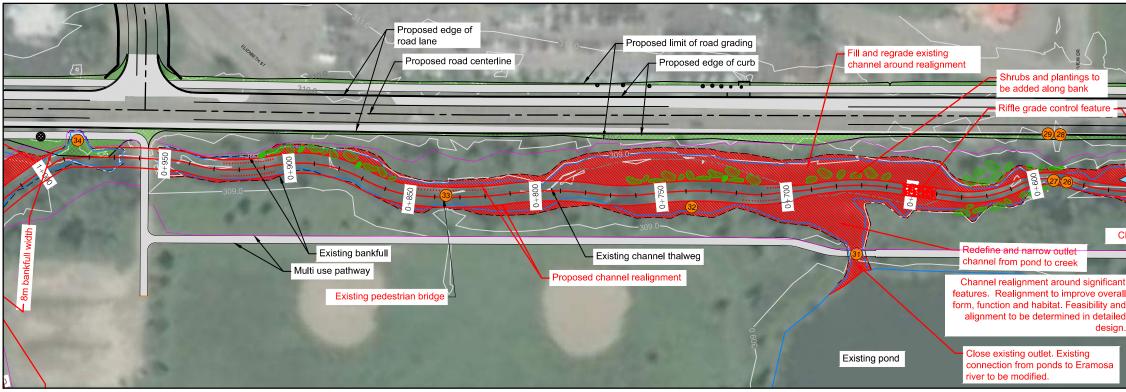
Feature #28 and #29: Limestone pillars with wood board fencing leading to main entrance (potential significance). No impact to feature anticipated as a result of proposed channel works.

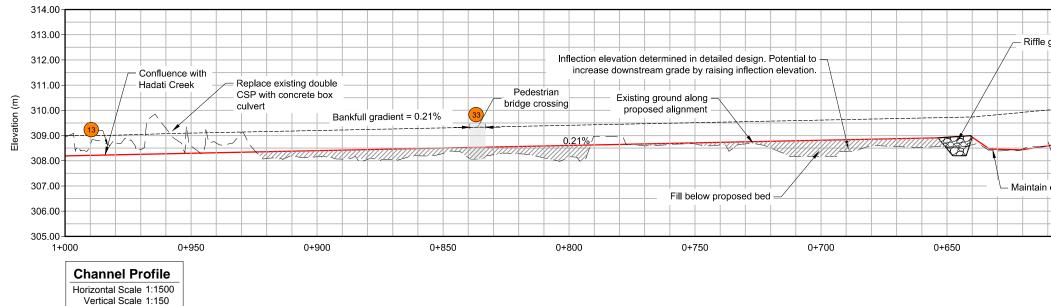



Feature #26: Fieldstone weir (listed, non-designated significant feature). Feature is a substantial barrier to fish passage and limiting factor in overall channel function and health. As a result of proposed channel works it is anticipated that the feature will be backwatered, decreasing or eliminating the existing fish passage barrier.

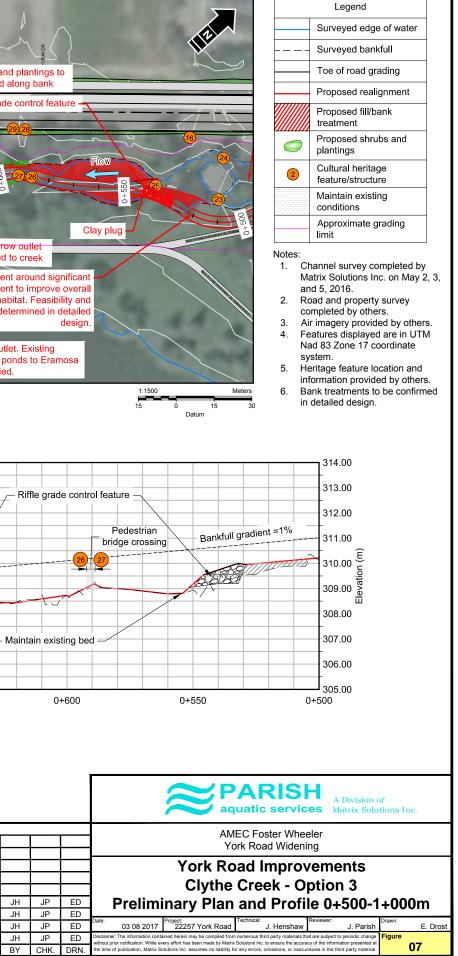
likely to be modified or removed as a result of proposed channel works.

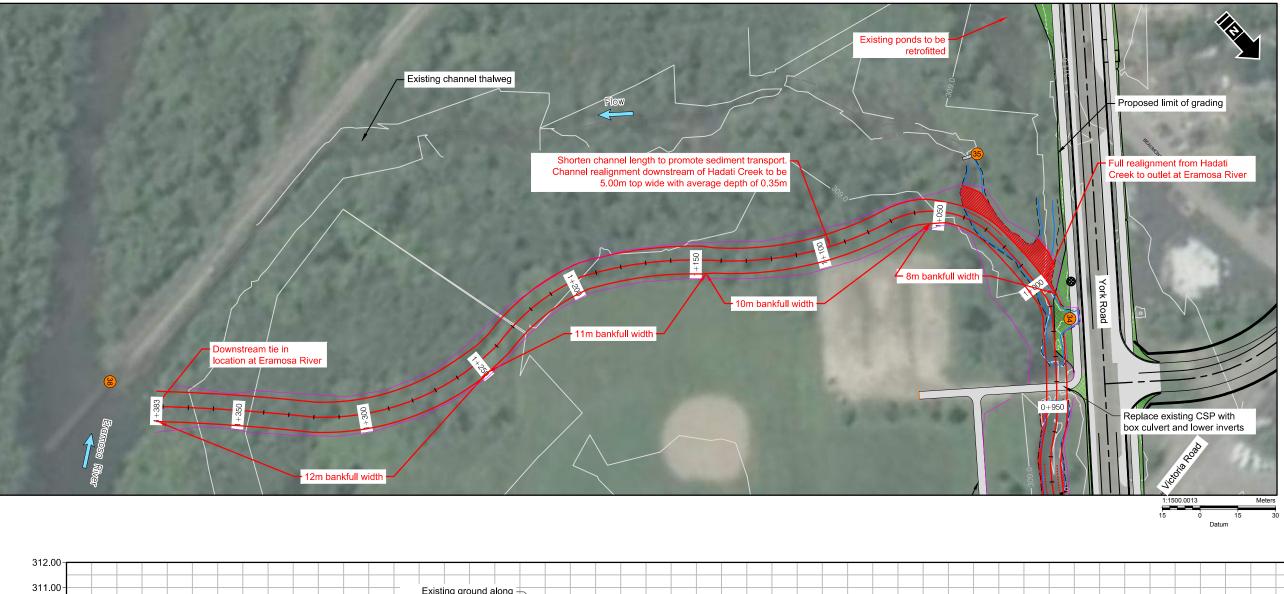

15	Meters 30	A Division of A Division of Matrix Solutions Inc.								
	AMEC Foster Wheeler York Road Widening									
		York Road Improvements Clythe Creek Option 3 - Reach C-10								
		Cultural Heritage Feature Impacts								
JP	ED	Date: 03 08 2017 Project: Technical: A Reviewer: J. Parish Drawn: E. Drost								
JP CHK.	ED DRN.	Disclaime: The information contained herein may be compiled from numerous third party materials that are subject to periodic charge. Figure without prior notification. While every effort has been made by Matrix Solutions inc. to ensure the accuracy of the information presented at the time of publication. Matrix Solutions linc. assume no liability for any errors, omissions, or inaccuracies in the third party material.								

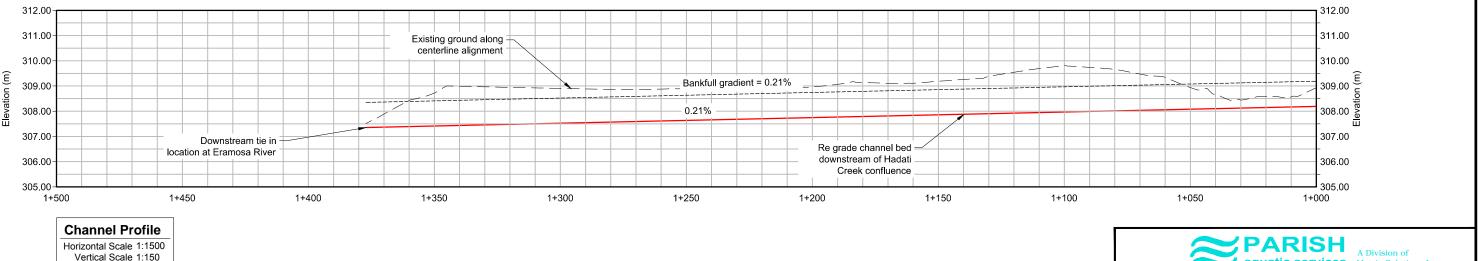



Channel Profile Horizontal Scale 1:1500 Vertical Scale 1:150

	REVISION							
03	5	03 08 2017	Revised based on client comments	JH	JP	ED		
02	2	01 17 2017	Revised based on client comments	JH	JP	ED		
01		12 09 2016	Revised based on client comments	JH	JP	ED		
00)	09 15 2016	Draft for client review	JH	JP	ED		
No	<u>.</u>	DATE	DESCRIPTION	BY	CHK.	DRN.		

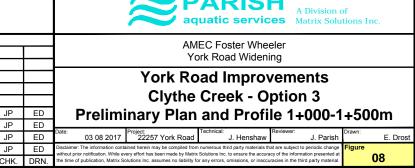



06

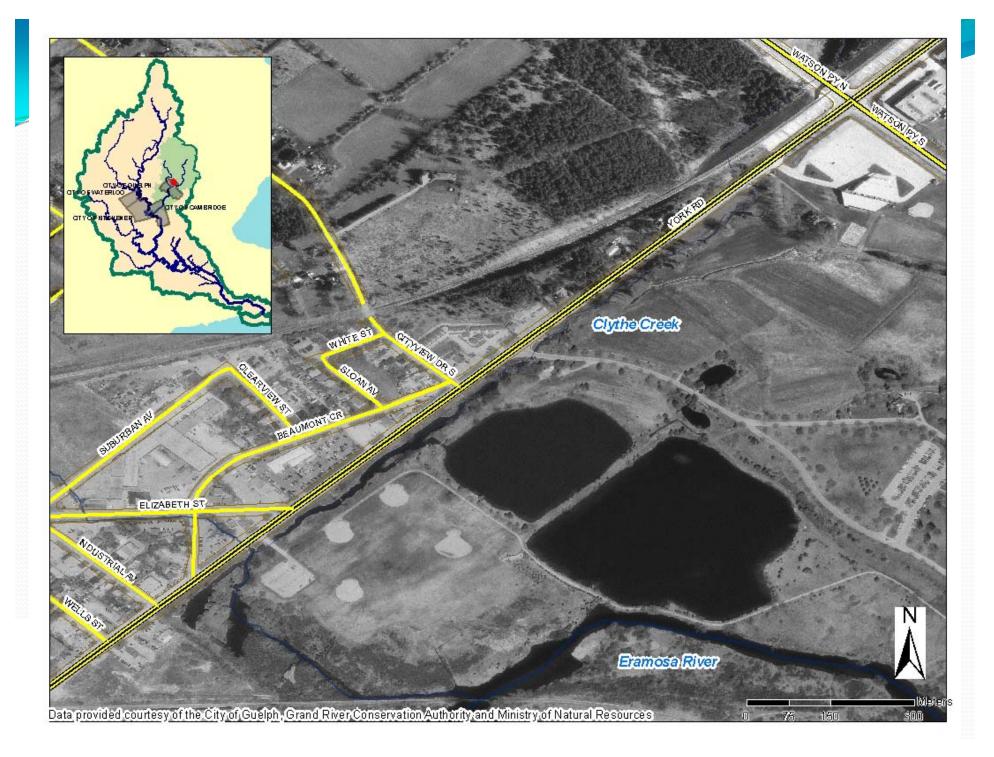




		REVISION		
03	03 08 2017	Revised based on client comments	JH	JF
02	01 17 2017	Revised based on client comments	JH	JF
01	12 09 2016	Revised based on client comments	JH	JF
00	09 15 2016	Draft for client review	JH	JF
No.	DATE	DESCRIPTION	BY	CH



		REVISION		
03	03 08 2017	Revised based on client comments	JH	J
02	01 17 2017	Revised based on client comments	JH	J
01	12 09 2016	Revised based on client comments	JH	J
00	09 15 2016	Draft for client review	JH	J
No.	DATE	DESCRIPTION	BY	CH


	Legend						
	Surveyed edge of water						
	Surveyed bankfull						
	Toe of road grading						
	Proposed realignment						
	Proposed fill/bank treatment						
2	Cultural heritage feature/structure						
	Approximate grading limit						

- 1. Channel survey completed by Matrix Solutions Inc. on May 2, 3, and 5, 2016.
- 2. Road and property survey completed by others.
- 3. Air imagery provided by others. Features displayed are in UTM 4.
- Nad 83 Zone 17 coordinate system.
- Heritage feature location and 5.
- information provided by others. Bank treatments to be confirmed in detailed design. 6.

Assessment of Clythe Creek Remediation Alternatives, Guelph, ON

UW 4th year Engineering Students November 23, 2007

Project Objectives

- Accommodate for the widening of York Road
- Improve cold water aquatic life habitat
- Improve the stream thermal regime

Project Scope

- Assess the current state of the study area
- Determine alternative solutions for remediation
- Present final detailed design for the preferred alternative

Current Site Conditions

- Only crude base flow estimate available (17.7 L/s)
- No average or peak discharge values available
- Creek classified as cool water stream
- Stream is located in sensitive groundwater recharge/discharge area
- Land currently classified as institutional; proposed use as greenlands

Hydrology

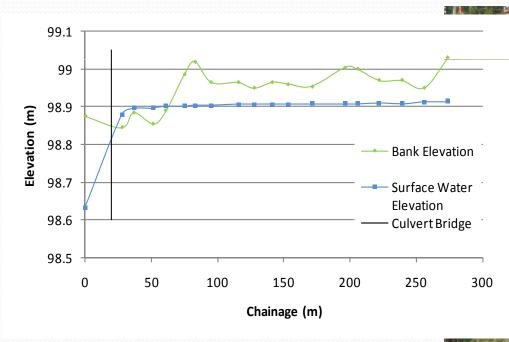
• Three method were used to estimate stream discharge

- Rational Method
- Regional Analysis
- SCS Triangular Method

	2 Year	20 Year	25 Year	50 Year	100 Year
Rational Method					
tc = 4 hrs	14.06	_	26.21	29.21	32.20
tc = 6 hrs	10.16	-	18.02	19.99	21.93
Regional Analysis					
Region 7	3.76	8.85	_	_	11.81
Region 8	3.05	6.00	÷	.	7.93
SCS Triangular					
Method					
D = 4hr	0.1044		2.89	4.02	5.28
D = 6hr	0.0942		2.60	3.63	4.77
D = 4hr			<u></u>		00

All flows are in m³/s

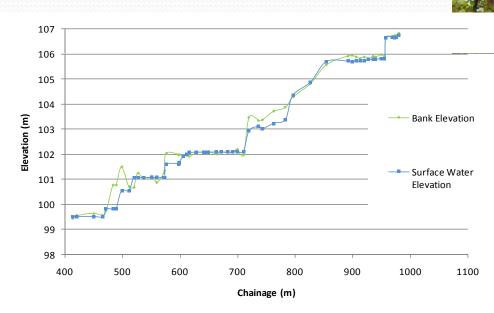
Problems/Issues

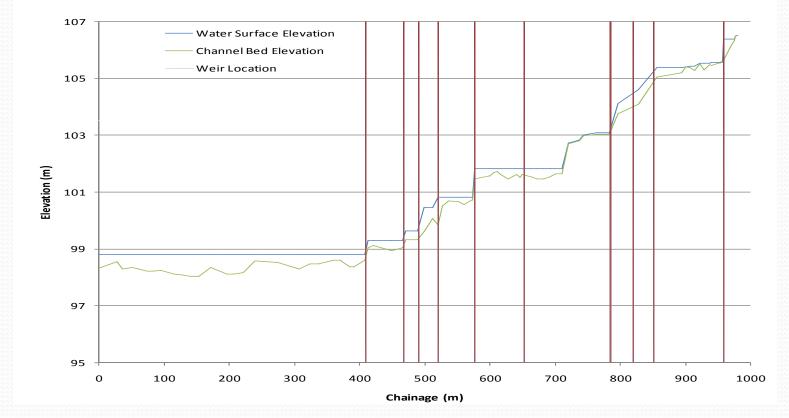

- Rational Method: assumes small watershed area and uniform rainfall
- Regional Analysis: study area near boundary of two regions
- SCS Triangular Method: assumes uniform rainfall
- Recharge/discharge play significant role in the study reach
- Wetlands and storm detention ponds upstream

HEC-RAS Model Creation

- Current site conditions modeled using topographical survey data
- 84 cross sections, 10 weirs, 2 vehicle bridges, and 3 pedestrian bridges over a stream length of 1 km
- Created to identify:
 - bank-full discharge
 - low flow water elevations and water velocity
 - Basis for creating future designs
- Base flow and bank-full discharge scenarios run

Bank-Full Conditions


• Lower reach max discharge = 1.3m³/s


Bank-Full Conditions

• Upper reach max discharge = 0.6 m³/s

Base Flow Conditions

• Water velocities during base flow approximately 0.005m/s

Current Site Conditions Water Quality

- Nitrates, phosphates, DO below PWQO
- Temperature satisfies cold water habitat conditions (might not in the summer)
- pH of the downstream is high (9.2)
- BOD generally increases from upstream to downstream

Alternatives

- 1. Do not change the current alignment of Clythe Creek
- 2. Construct a concrete channel parallel to York Rd to accommodate the water currently flowing through Clythe Creek
- 3. Realign sections of the creek which interfere with the scheduled road construction
- 4. Realign all or the majority of Clythe Creek running thought the Site

• Map and explain alternatives more

Regulatory Compliance

- 1. May or may not satisfy Canada Fisheries Act (CFA)
- 2. It does not satisfy CFA (destruction of fish habitat)
- 3. Satisfies the regulations
- 4. Satisfies the regulations

Thermal Regime and Aquatic Habitat Impacts

- Ditch-like stream would not help to lower temperatures and will decrease the quality of habitat
- 2. Concrete channel would destroy the fish habitat
- 3. Partially re-naturalized stream would benefit the aquatic organisms and improve thermal regime
- 4. Completely re-naturalized stream would provide the largest environmental benefits

Social Impact

- 1: The stream would loose its aesthetic attractiveness
- 3 and 4: Re-naturalization of the creek would keep the area aesthetically pleasing and add to the educational value in the community

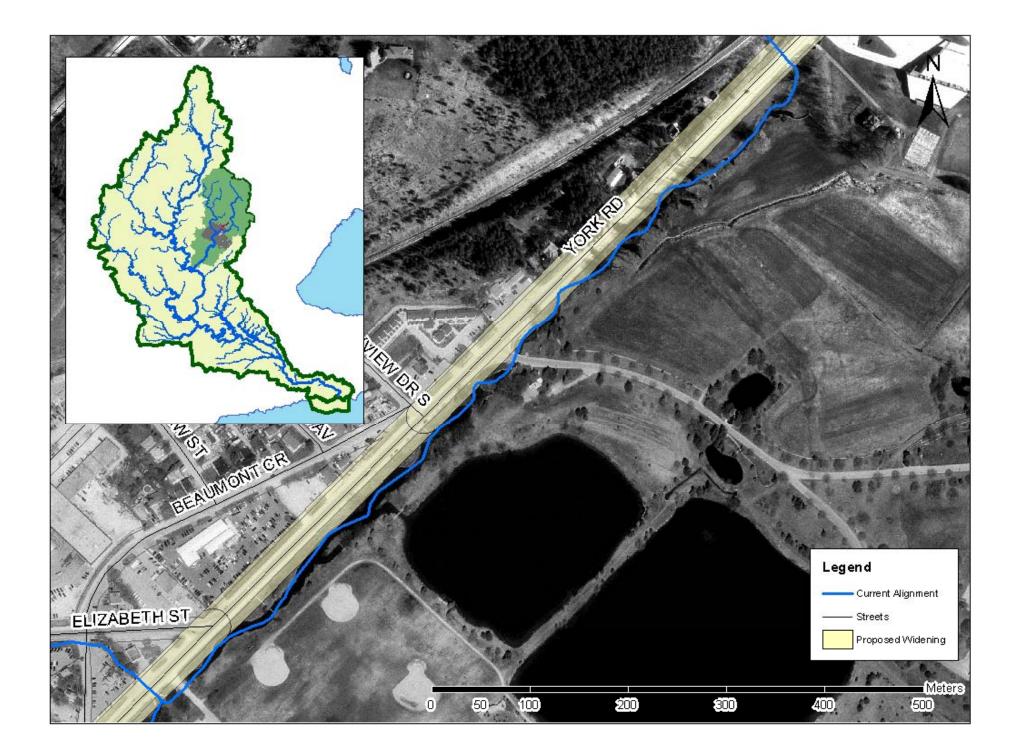
Costs

	Initial Costs	Maintenance	Present Worth
Alternative 1	\$9,300	\$1700	\$11,000
Alternative 3	\$112,500	0	\$112,500
Alternative 4	\$166,500	0	\$166,500

Preferred Alternative

• Alternative 4 - Complete re-naturalization of the study reach

Recommendations


- Research remediation tools
- Use HEC-RAS model to design the new channel against erosion
- Investigate the cause of high pH
- Analyze temperature data (to be obtained from Trout Unlimited)

Questions?

Rehabilitation of Clythe Creek

Tri-City Environmental Ltd. March 28, 2008

Project Objectives

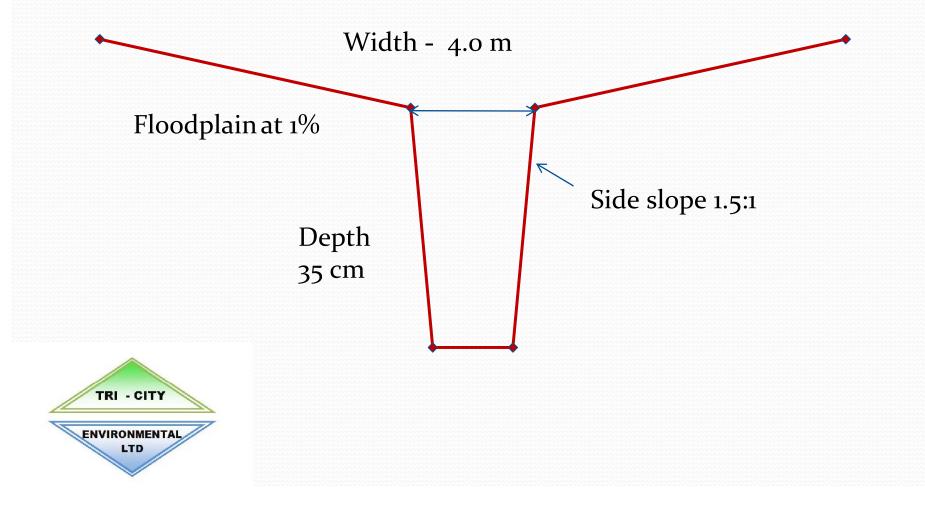
- Accommodate for the widening of York Road
- Increase stream velocity
- Improve the stream thermal regime
- Improve aquatic life habitat
- Maintain parkland athletics

Phase I

- Background site assessment
- Modeling of existing conditions
- Selection of preferred alternative
 - Complete realignment of the study reach

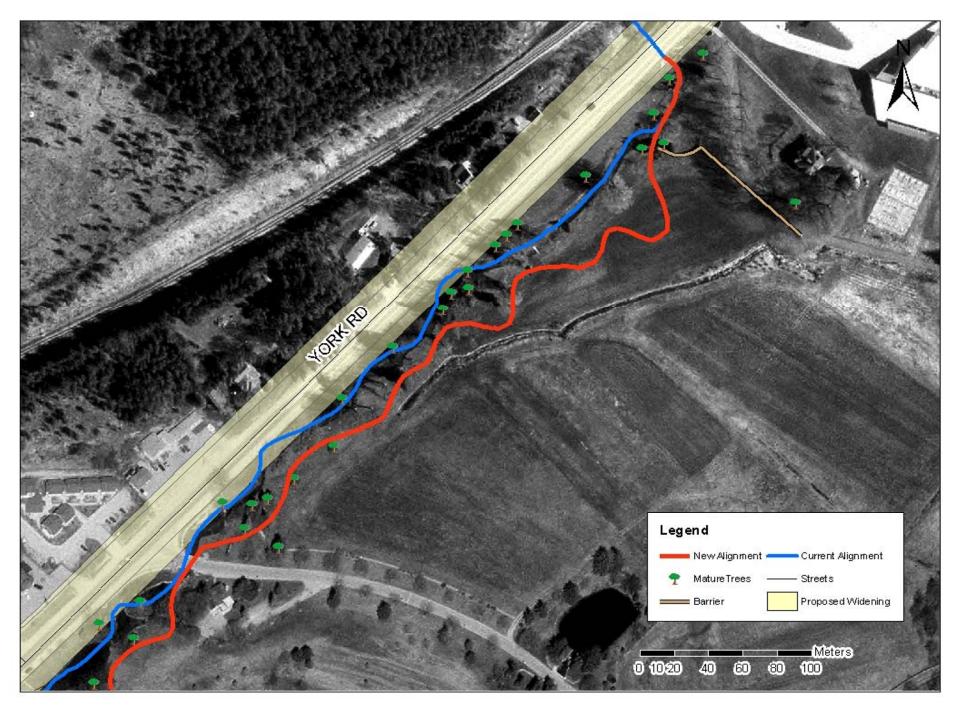
Phase II Scope

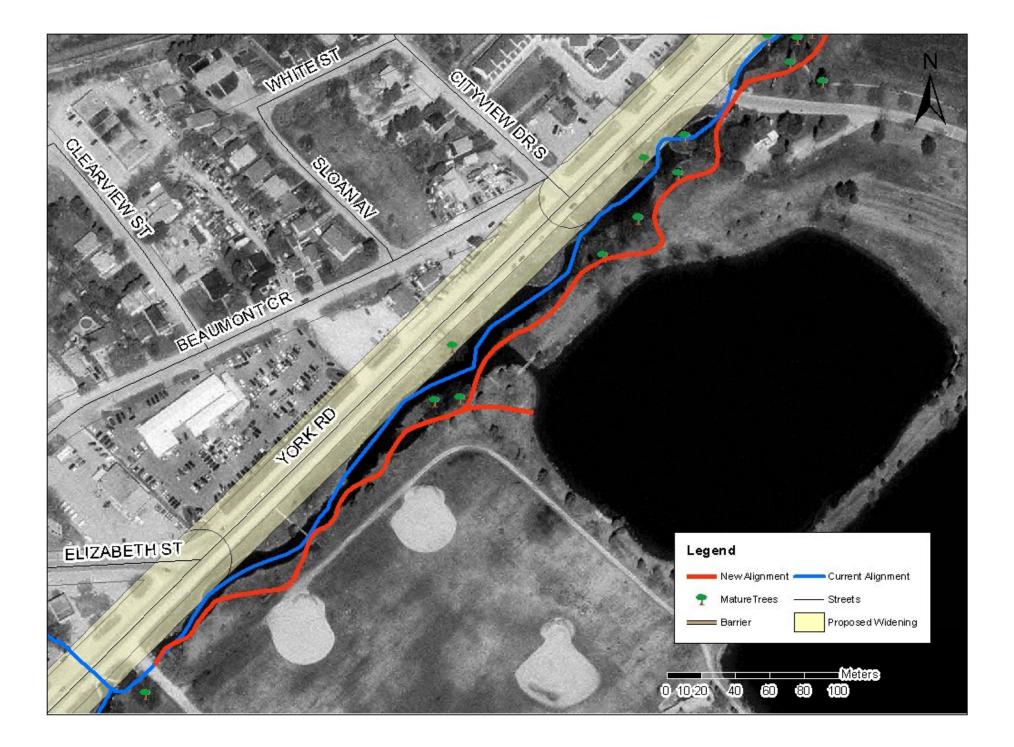
- Determine channel geometry and alignment
- Compare the current and proposed channel alignments
- Propose a construction schedule
- Prepare a cost estimation



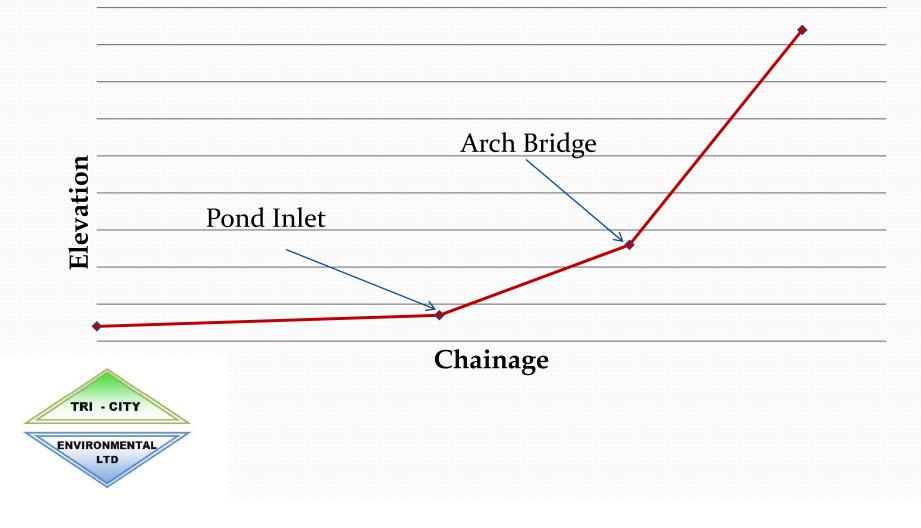
Design Parameters

- Split channel into upstream and downstream separated by the arch bridge
- Design bankull flow of 2 m³/s (Tr=1.25 yr)
- Class C stream (Rosgen Classification)
 - defines ranges for width to depth ratio and sinuosity


Proposed Alignment Cross Sectional Geometry (at Riffles)

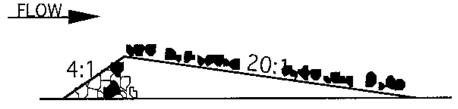


Proposed Alignment Meander Geometry

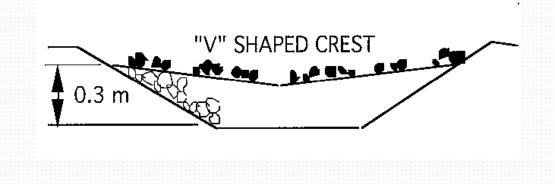

- Regional morphological relationships used to calculated amplitude, wavelength, and radius of curvature
- Radius of curvature/bankfull width >2.5 indicates lateral stream stability
- Target sinuosity for Upstream: 1.25; Downstream: 1.1
- Non-uniform meander pattern to create more natural look

Proposed Alignment Channel Slope

Vegetation and Buffer Strips


- Vegetated zones along the creek 5 meters wide
- Benefits
 - Bank stabilization
 - Shading (reducing thermal pollution)
 - Cover (better habitat for fish)
 - Geese deterrence (reducing organic loading)
- Used the list of Ontario native species to pick a variety of species with different salt and moisture
 - tolerance

In-Stream Structures Constructed Riffles


Material size

- US: 60 mm
- DS: 18 mm

23 riffles to be constructed

In-Stream Structures Point Bars • Total of 19 point bars Inside bank outside bank 3% Floodplain graded at 1% 10% TRI - CITY

ENVIRONMENTAL

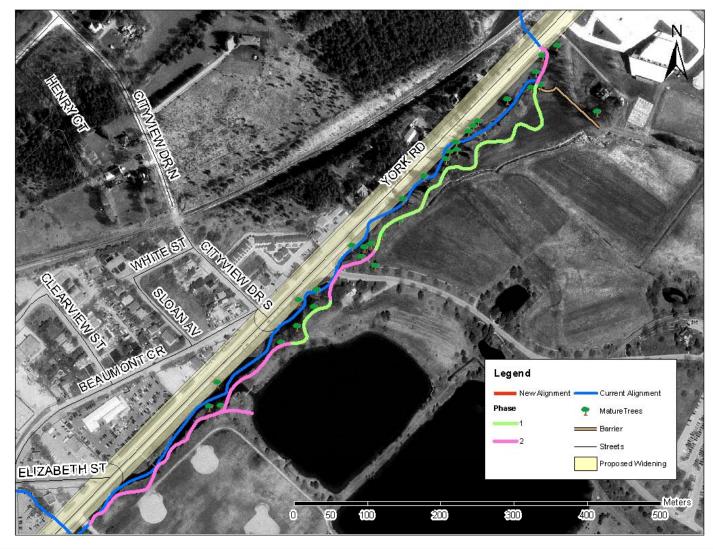
Evaluation of Project Objectives HEC-RAS Analysis

- 80 cross sections and an arch vehicle bridge
- Flow elevations were determined for the 1.25, 2, 20, and 100 year flows
- Velocities and elevations compared to current alignment model
 - New alignment results in increased velocities and similar surface water elevations

Evaluation of Project Objectives

Temperature & Fish Habitat

- Increased velocities
 - Cooler stream temperatures
- Vegetation
 - Reduce thermal loading
 - Create fish habitat
- Riffles
 - Create zones of varied flow, preferred by fish



Evaluation of Project Objectives Aesthetics

- Clythe Creek runs through existing parkland
- Loss of waterfall structures, mixed opinion
- Re-vegetation will result in park like appearence
- Variation in stream alignment gives less "engineered" appearance

Construction Schedule

Cost Estimation

Current Stream

Creek Features

Maintenance

Backfill Current Cross Section C Removal of in-stream structures

Creek Features

Monitoring buffer vegetation

New Stream	Miscellaneous Construction
Construction of new channel alignment	Safety
Regrade new floodplain`	
Buffer Strips	

Cost Estimation (Continued)

Cost Summary Table		
Phase I		\$113,900
New Stream		
Miscellaneous Construction		
Phase II		\$134,800
Current Stream		
New Stream		
Phase III		\$7,790
Maintenance		
	Subtotal (2006 dollars) =	\$256,490
	Inflation rate* =	3.33%
	Total Costs =	<u>\$274,000</u>

Questions

APPENDIX A-2 Natural Environmental Report

Environmental Input to the EA for the Widening of York Road, Victoria Road to the East City Limit, Guelph, Ontario

Prepared for: The City of Guelph, Ontario c/o: Totten Sims Hubicki Associates 72 Victoria Street South Kitchener, Ontario N2G 4Y9

Project No. 658

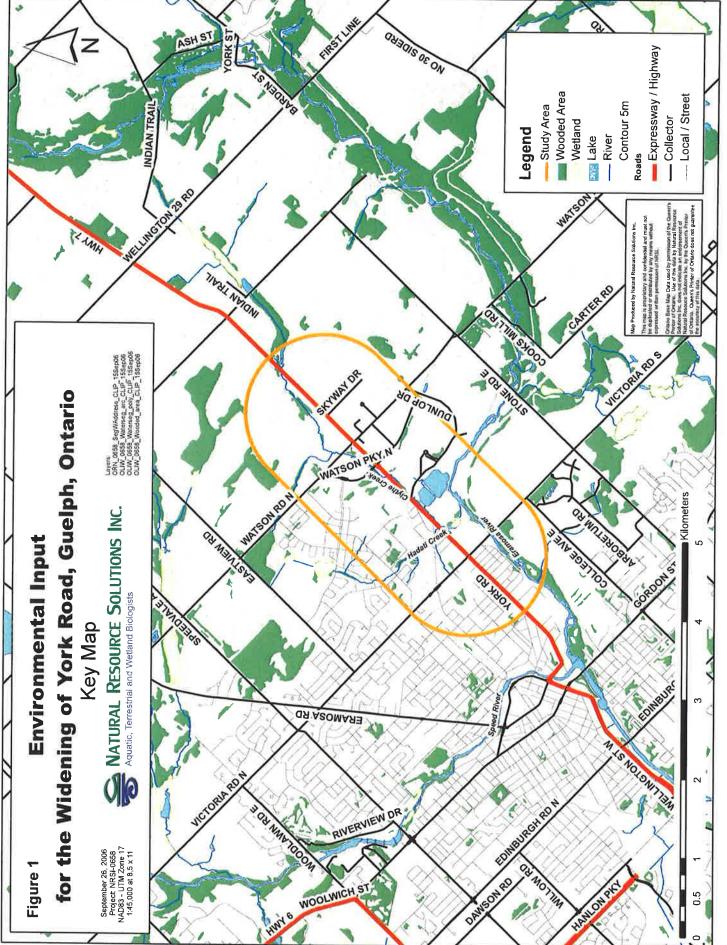
Date: September 2006

Memo

Project No. 658

To:	Ernst Heinrichs – Totten Sims Hubicki Associates	
CC:		
From:	Dave Green	
Date:	September 25, 2006	
Re:	Environmental Input to York Road Widening - Guelph	

The City of Guelph has proposed to widen York Road/Provincial Highway 7 in the section from Victoria Road eastward to the city limit. Natural Resource Solutions Inc. has provided the following information on the existing natural environment features within the project boundary as well as an assessment of impact for the preliminary design provided by TSH on September 13, 2006. Please refer to Drawings 5.1 to 5.4 in the main report by TSH for the preliminary design. A tree survey has also been completed for the York Road corridor. Information on the tree survey will be provided to TSH under a separate cover. Please refer to Figure 1, Key Map, for the location of the study area.


Methods

Information on the aquatic habitats was obtained by review of available background information and assessment of habitat in the field. Background information was obtained from the Ministry of Natural Resources Guelph District Office on June 8, 2006.

The aquatic habitat in the vicinity of York Road was assessed by an aquatic biologist from NRSI during two site visits, which occurred on June 5, 2006 and June 8, 2006.

A tree survey was carried out by a certified arborist from NRSI on June 5, June 16, and June 19, 2006

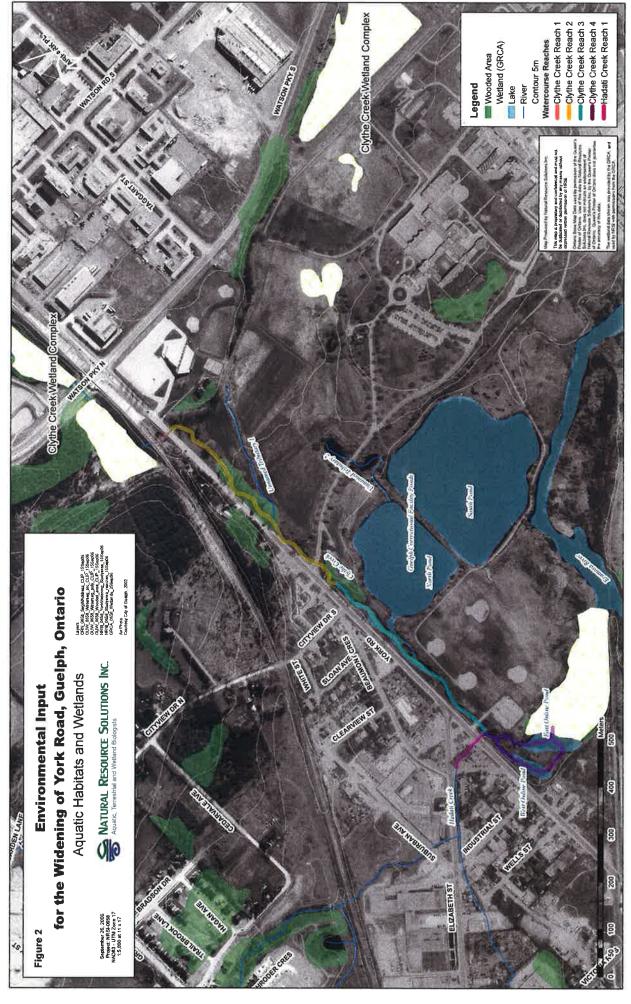
50 Westmount Rd, N., Unit 230, Waterloo, Ontario, N2L 2R5 Tel: (519) 725-2227 Fax: (519) 725-2575 Web: www.nrsi.on.ca

NRSI_0658_YorkRd_keymap_fig1_45k_26Sep08

EXISTING CONDITIONS

Aquatic Habitat – Clythe Creek

According to the Grand River Conservation Authority (GRCA), Clythe Creek is a coolwater stream (GRCA 2006). It originates in a lowland cedar swamp located approximately 6km upstream of its outlet to the Eramosa River, and the water is cold and clear in the upstream area near the swamp (Ecologistics et al 1998). The swamp is part of the Clythe Creek Provincially Significant Wetland (PSW) Complex. There are additional groundwater inputs to Clythe Creek between Watson Road and York Road (Ecologistics et al 1998). This section of the creek flows through another wetland in the Clythe Creek PSW Complex.


There are also 2 tributary streams that originate east of Clythe Creek (see Figure 2). One enters directly into Clythe Creek upstream of the ponds at the Guelph Correctional Centre (Unnamed Tributary 1), and the other flows into the south pond (Unnamed Tributary 2). Art Timmerman of the MNR indicated that both of these tributaries have cold water temperatures (MNR, 2006). The tributary that enters directly into Clythe Creek is currently providing a cooling influence. A survey by the MNR on August 30, 1994 found water temperatures at 2 locations in the tributary to be 11.6°C and 10.8°C while the air temperature was 19.7°C. In contrast, the other tributary flows into the south pond and does not have a meaningful cooling influence on Clythe Creek. Hadati Creek joins Clythe Creek from the north near Elizabeth Street, and is another coldwater tributary. It is described in detail in Section 3.3.

Within the study area, there are numerous weirs and dams on Clythe Creek that create barriers to fish movement (See Photo 1, Appendix I)

Clythe Creek – Reach 1

This short section of Clythe Creek is situated between the York Road crossing and a railway crossing (Figure 2). The vegetation on both sides of the creek is primarily long grasses along with other herbaceous plants and occasional shrubs. There are also several trees, including cedars, maples, and other deciduous species. The trees and shrubs create a canopy that provides approximately 70% shade to this reach.

2

NRSI_0658_YorkRd_Reaches_Fig2_5k_265ep08

The bank vegetation is composed of grasses, other herbaceous plants, and shrubs. The high vegetation density affords good bank stability. Bank-full width ranged from approximately 3.1 to 3.5m. The channel substrate is dominated by coarse materials, consisting of approximately 10% boulder, 60% cobble, 10% pebble, 10% gravel, and 10% sand. Cover for fish includes pools (at the York Road culvert), boulders, and cobble. Most of this section is considered riffle habitat (See Photo 2, Appendix I).

On June 5, 2006, the measured wetted widths varied between 2.4 and 3.0m. Water depths ranged from 9 to 19cm. Water quality parameters were measured at 1:55pm. The water temperature was 18.8°C, and the air temperature was 25°C. The dissolved oxygen was 9.3ppm, or 99.8% saturation (at 18.8°C). The pH was 7.96, and the conductivity was 716µs/cm.

Clythe Creek – Reach 2

This reach of Clythe Creek is between the York Road crossing and the Ponds at the Guelph Correctional Centre (Figure 2). The lands surrounding this reach have a gently rolling topography. The vegetation in the riparian zone is manicured grass with some open-grown trees, including coniferous trees and willow trees (see Photo 3, Appendix I). Although the grass was mowed right up to the top-of-bank, the bank vegetation also included some trees, shrubs, and longer grass creating a high vegetation density on the banks.

Channel substrate in this reach is approximately 30% boulder, 20% cobble, 20% silt, 10%sand, 10% gravel, and 10% muck. Aquatic habitat features and cover include pools, riffles, backwater, undercut banks, woody debris, several types of aquatic vegetation, boulders, and cobble.

During site visits on June 5 and June 8, 2006, the measured wetted widths of the channel were as narrow as 1.8m in narrow sections of the channel, and up to 3.5m in wider locations. Measured depths at various locations along the middle of the channel varied between 8 and 72cm. The macrohabitats consisted mostly of runs, occasional pools, and a few riffles. Maximum pool depth was 72cm, and many runs were deeper than 30cm. The water temperature taken in the middle of this reach was 19.7°C at 3:40pm while the air temperature was 26°C. At the same location, dissolved oxygen

was 9.5ppm (103.5% saturation at 26°C), pH was 7.99, and conductivity was 709µs/cm. Many small fish were observed.

Clythe Creek – Reach 3

This reach lies between the ponds at the Guelph Correctional Centre (Figure 2) and Hadati Creek. The lands surrounding this reach are relatively flat, and include baseball diamonds. The vegetation is dominated by manicured grass to the top-of-bank of Clythe Creek. Trees are distributed somewhat randomly in the vicinity of the creek. The vegetation density on the banks of Clythe Creek has been compromised due to feeding by the large numbers of geese that inhabit this area. This has contributed to bank instability, and boulders that were placed along the banks for aesthetic purposes are no longer integrated with the bank.

The bank height ranges from approximately 0.1 to 0.3m, and the bank-full channel width varies between 7 and 12m. This widened section of Clythe Creek has some meandering form, but intensive modifications have left it with a low gradient. As a result, the water becomes ponded during low flow (see Photo 4, Appendix I). The substrate reflects the depositional nature of the slow, diffused flows. It is approximately 50% silt, 30% boulder, and 20% muck.

On June 8, 2006, the water temperature in Clythe Creek immediately upstream of the Hadati Creek outlet was 23.5°C at 3:45pm while the air temperature was 24°C. The pH was 8.39, and the conductivity was 686µs/cm. Fish from the families Cyprinidae and Centrachidae (*Lepomis* sp.) were observed in this reach.

Clythe Creek – Reach 4

This reach lies between the outlet of Hadati Creek and the downstream limit of two online ponds (Figure 2) The flow diverges downstream of the Hadati Creek outlet to flow into the two ponds, which are located side-by-side (see Photo 5, Appendix I). The east online pond is at a lower elevation and is the larger of the two. The land on the east side of this pond is wooded. The land in between the two ponds and west of the ponds is manicured grass with occasional trees. Boulders were used as a landscaping feature along the banks, and there is abundant aquatic vegetation throughout both ponds.

The portion of flow that enters directly into the east pond passes over a weir and into a plunge pool at the upstream end of the pond. The west pond receives flow directly and as a result the water is at a higher elevation than that of the east pond. The flow leaves the pond through a channel that connects to the downstream end of the east pond. There is a pedestrian crossing over this channel that uses a corrugated steel pipe (CSP) to convey flow. A weir situated in this outlet channel keeps the west pond at its higher elevation.

On June 8, 2006, the water was relatively shallow (approximately 0.3m deep) throughout most of the area of the ponds. Water temperature was measured where the flow from the upper (west) pond joins the lower (east) pond. At 2:45pm, the water temperature was 23.5°C and the air temperature was 24°C. The pH at this location was 7.80 and the conductivity was 812µs/cm. The dissolved oxygen level was 9.3ppm, indicating supersaturated conditions (approximately 110% at 23.5°C). This was likely a result of the prolific growth of aquatic plants (see Photo 6, Appendix I). Fish from the families Centrarchidae (*Lepomis* sp.) and Cyprinidae were observed in the ponds.

Aquatic Habitat – Ponds at the Guelph Correctional Centre

The ponds at the Guelph Correctional Centre consist of two large ponds to the south of York Road and Clythe Creek (Figure 2). The north pond is closer to Clythe Creek, and is connected via a short channel approximately 10m long and 3 to 4m wide (see Photo 7, Appendix I). The flow of water moves slowly out of the pond as it joins the slow-moving water of this widened section of Clythe Creek. The south pond is not directly connected to Clythe Creek.

These constructed ponds are known to provide habitat for a variety of game fish and are used as a popular urban fishery (see Photo 8, Appendix I). Manicured grass surrounds much of their shorelines, and various trees and shrubs line the banks in some locations. The two ponds are separated by a narrow strip of land, and the south pond has a higher water level than the north pond (see Photo 9, Appendix I). The south pond is contained by a berm between it and the Eramosa River along its south shoreline. A formal trail has been established along the top of the berm on the south side.

Some water from the south pond seeps into the north pond. One location in particular was observed where the surface of the water in the north pond was turbulent due to

flows entering from the south pond. Other less obvious seeps may also be present. As a result, this seepage flows through the north pond and subsequently into Clythe Creek. Therefore, there is a hydraulic connection between the south pond and Clythe Creek.

While this provides an input of flow, the potential for a cooling influence is lost as the water from the tributary entering the south pond is subject to warming while passing through the ponds. Furthermore, most of the flow leaves the south pond through a 45cm diameter CSP leading directly to the Eramosa River, which causes a large portion of the input from the tributary to be diverted directly to the Eramosa River instead of to Clythe Creek.

Aquatic Habitat – Hadati Creek

According to the GRCA, Hadati Creek is considered a coldwater stream (GRCA 2006). According to MNR, Guelph District file information, the gradient is higher upstream of Elizabeth Street, the substrate is primarily bedrock, and the stream is narrower than it is near the outlet to Clythe Creek (MNR 2001). A western tributary discharges to the main branch east of the Elizabeth Street/Industrial Street intersection. Upstream of Suburban Avenue, "...there is a bedrock shelf which probably prevents the upstream migration of fish (MNR 2001)."

Hadati Creek – Reach 1

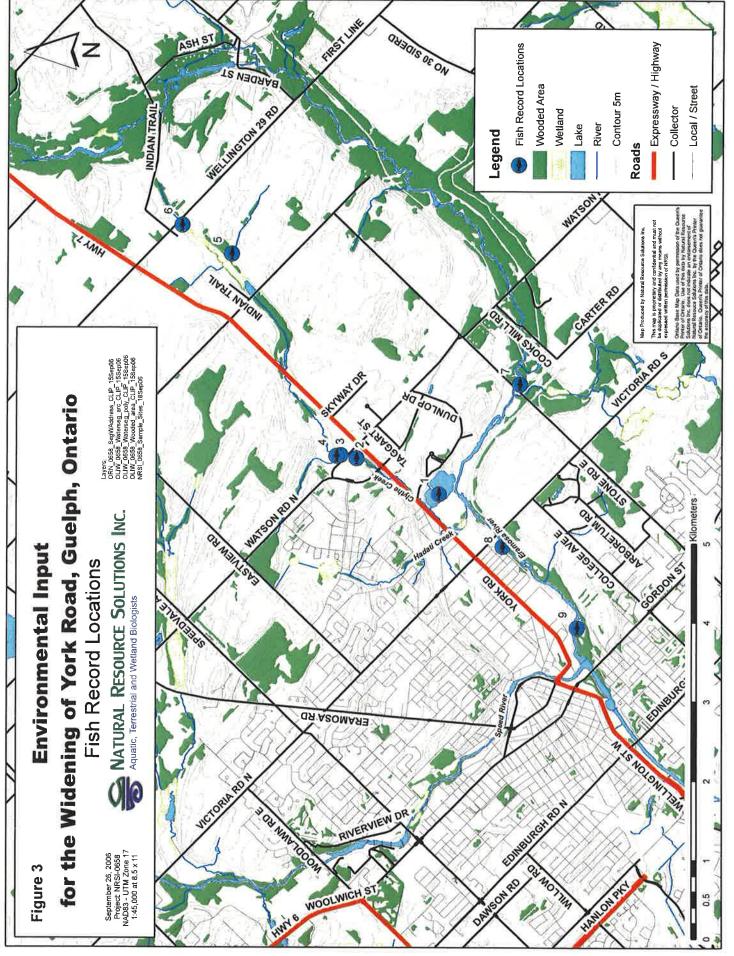
Reach 1 of Hadati Creek is between Elizabeth Street and its outlet to Clythe Creek (Figure 2). Here, Hadati Creek passes between parking lots of the commercial lands that line York Road. The corridor is extremely narrow, with no more than one or two metres of vegetation on either side of the creek. The creek passes through a large box culvert under York Road. On the downstream side, grasses in the roadside ditch surround the short length of channel between the road and the outlet to Clythe Creek.

The channel in Reach 1 is approximately 3m wide, and is very entrenched. The bank height ranges from approximately 1.9 to 2.2m, and bank slopes are nearly vertical. Most of the banks are hardened with a concrete bag wall (see Photo 10, Appendix I). Elsewhere, vegetation consists of grasses and other herbaceous plants that provide a moderate vegetation density for bank stability. Some minor bank scour is occurring on the west bank immediately upstream of the York Road culvert, likely resulting from flow patterns at the culvert inlet. The varied channel substrate is the most important habitat

feature. It consists of approximately 30% cobble, 20% pebble, 10% gravel, 20% sand, and 20% silt. A 2001 MNR report shows that the substrate downstream of Elizabeth Street is "...composed on fractured bedrock and bedrock (MNR 2001)." The difference in observations occurred either because of different observation locations, or because material from upstream of the site has been deposited in this reach since 2001.

On June 8, 2006, the measured wetted widths in Reach 1 were approximately 2.7 to 2.9m between York Road and Elizabeth Street. Measured water depths ranged from 8 to 20cm. Several water quality parameters were measured at 3:05pm approximately 5m upstream of the York Road culvert. At this time the air temperature was 23°C, the water temperature was 21.9°C, the pH was 8.27, and the conductivity was 989µs/cm. Many small fish were observed on the upstream side of York Road.

FISH COMMUNITY


Rare Fish Species

Records of greenside darter in the vicinity of the study area were found on the Natural Heritage Information Centre (NHIC) website using the geographic query function (NHIC 2006). There was one "element occurrence" square (1km by 1km) that included part of the study area. Observations were made at that location in 1991. They were also found during sampling by the University of Guelph in the Guelph Correctional Facility Ponds in 2005 (see Section 3.4.4 of this report). The greenside darter (*Etheostoma blennioides*) has an S-rank (subnational rank) of S4, which means it is apparently secure. Nevertheless, at the present time it remains listed as a species of "special concern" by both the MNR for Ontario and COSEWIC for Canada (NHIC 2006; Pers. Comm. with Donald Kirk, MNR 2006b).

According to the *Ontario Freshwater Fishes Life History Database (OFFLHD)*, greenside darters prefer "algae-covered rocky riffles of creeks and small to medium rivers with clear water and moderate to fast current" (Eakins 2005). Their preferred water temperature is 25.4°C. As phytophils, greenside darters deposit their eggs on vegetation and woody debris (Eakins 2005).

Brook Trout and Brown Trout

According to a MNR map of brook trout distributions (MNR Unknown Date), brook trout were known to inhabit Clythe Creek in 1952 (Figure 3). According to Art Timmerman (MNR 2006a), there are currently no brook trout but there are mottled sculpin (*Cottus bairdi*) which also require cool water temperatures. However, the Speed Valley chapter of Trout Unlimited is conducting a monitoring program throughout the Clythe Creek watershed to determine the suitability of the habitat for brook trout. Temperature monitoring is ongoing in 2006 and electrofishing will be conducted throughout Clythe Creek to determine if any populations are present (D'Amelio, 2006). In addition, brook trout and brown trout are known to inhabit the Eramosa River (Ecologistics Ltd. et al 1998).

NRSI_0658_YorkRd_samplingsites_fig3_45k_26Sep08

Urban Fishery at the Guelph Correctional Centre Ponds

A report by Art Timmerman indicates information from anglers that the ponds at the Guelph Correctional Centre "...contain excellent populations of pike, smallmouth bass, crappie, bullheads and sunfish. Yellow perch and largemouth bass have also been caught in these ponds (MNR 2001)."

Other Fish Records

Unnamed Tributary 1, which enters Clythe Creek upstream of the ponds at the Guelph Correctional Centre, is known to contain fish near the outlet (Figure 2). A survey by the MNR on August 30, 1994 indicated that unidentified minnows were observed in the lower 10m of the tributary (MNR 1994).

The sampling results for a number of fish collection records from the MNR Guelph District Office files are given in Table 1. Descriptions are given below for the various sources of information for this list of fish species. Available specific fish sampling locations are shown on Figure 3.

In 2005, the University of Guelph sampled several watercourses in southern Ontario, including the Eramosa River. Sampling in the Eramosa River watershed occurred in the ponds at the Guelph Correctional Centre (Record Location 1, Figure 3).

In 2001, Fisheries and Oceans Canada (DFO) conducted fish sampling at a variety of locations with the purpose of monitoring culvert installations. This included Clythe Creek upstream of the York Road corridor, between York Road and Watson Road (see Record Location 2, Figure 3).

In 1998, a subwatershed study was conducted for the Clythe Creek subwatershed (Ecologistics et al 1998). The report included a list of species for the entire subwatershed.

In 1990, the GRCA conducted exploratory electrofishing at 4 sites on Clythe Creek upstream of Watson Road (see Record Locations 3, 4, 5, and 6, Figure 3).

In 1981, Gregory Humphreys (affiliation not noted) conducted sampling under scientific permit at various locations in the Grand River and Thames River Drainage. One site was located on the Eramosa River at the "Guelph Correctional Centre (bridge)".

In 1972, the GRCA published a report called "Water Quality Survey of the Speed and Eramosa Rivers." The report includes results of fish sampling for 13 sites, 3 of which are on the Eramosa River in relatively close proximity to the outlet of Clythe Creek (see Record Locations 7, 8, and 9).

Common Name	Scientific Name	Provincial Rank (S-Rank)	University of Guelph, Correctional Centre Ponds (2005)	DFO, Clythe Cr. between York Rd. and Watson Rd. (2001)	Ecologistics et al, Clythe Creek Subwatershed (1998)	GRCA, Clythe Cr. Upstream of Watson Rd. (1990)	Gregory Humphreys Eramosa River at Correctional Centre (1981)	GRCA Water Quality Survey, Eramosa River (1972)
Cyprinidae	1						(1)01)	(25.27
creek chub	Semotilus atromaculatus	S5	X		X	Х		X
hornyhead chub	Nocomis biguttatus	S4						Х
common shiner	Luxilus cornutus	S5			X	X		Х
blacknose shiner	Notropis heterolepis	S5			X	E.		
northern redbelly dace	Phoximus eos	S5			X	X		
finescale dace	Phoxinus neogaeus	S5			X	Х		
bluntnose minnow	Pimephales notatus	S5	X	X				Х
fathead minnow	Pimephales promelas	S5			X	Х		
blacknose dace	Rhinichthys atratulus	S5			X	Х		
longnose dace	Rhinichthys cataractae	S5						Х
Percidae	1							
greenside darter	Etheostoma blennioides	S4	X					
fantail darter	Etheostoma flabellare	S4	X	X	X			
barred fantail*								Х
rainbow darter	Etheostoma caeruleum	S4	X					Х
johnny darter	Etheostoma nigrum	S5	X				X	Х
blackside darter	Percina maculata	S4					X	Х
Centrarchidae								
smallmouth bass	Micropteris dolomieu	S5						Х
largemouth bass	Micropteris salmoides	S5		I				Х
pumpkinseed	Leponis gibbosus	S5						X
rock bass	Ambloplites rupestris	S5		· · · · · · · · · · · · · · · · · · ·				Х
Catostomidae								
white sucker	Catostomus commersoni	S5			X	Х		X
northern hog sucker	Hypentelium nigricans	S4			X			X
Other Families								
brook stickleback	Culaea inconstans	S5		X	X	X	X	
brown bullhead	Ameiurus nebulosus	S5		Х				
central mudminnow	Umbra limi	S5		X	X	Х		
mottled sculpin	Cottus bairdi	S5			X	X		Х
brook trout	Salvelinus fontinalis	S5			Х			

Table 1. Fish Species Known from the Clythe Creek Subwatershed, and the Eramosa River near the Clythe Creek Outlet

*The "barred fantail" is most likely the fantail darter (Etheostoma flabellare)

OPPORTUNITIES AND CONSTRAINTS

The aquatic habitat in the section of Clythe Creek along the south side of York Road is heavily impacted by numerous weirs, straightening, widening, and ongoing maintenance of manicured grass along its length. There is also ongoing impact by large goose populations that are contributing to bank erosion. As such, there are many opportunities to improve the condition of the creek.

Factors to consider in the design process include the current use of the area as an urban angling opportunity, the use of the habitat by many warmwater species of fish, the limited space or buffer between York Road and Clythe Creek, and the opportunity to restore this portion of the creek so it continues to provide coolwater or coldwater fish habitat.

Grand River Fisheries Management Plan

Opportunities and constraints can also be identified in the Grand River Fisheries Management Plan, which was completed in September 1998 by the Ontario Ministry of Natural Resources and the Grand River Conservation Authority. The management plan identifies Clythe Creek as a mixed water tributary to the Speed River. The fish community objectives for mixed water tributaries are to achieve a "...coldwater fish community in areas where geological and biophysical characteristics are present and habitat exists or has been rehabilitated..." and a "...warmwater fish community in reaches that cannot support coldwater fish (MNR & GRCA 1998)." Based on these objectives, the planning and design of any work affecting a mixed water tributary such as Clythe Creek should investigate the possibility of improving the habitat for a coldwater fish community.

Furthermore, the management plan identifies issues that exist for the Speed River's mixed water tributaries. Of relevance to the York Road widening project are the following:

- 1. water quality/quantity impacts from:
 - a. nutrient and sediment inputs;
 - b. riparian zone destruction and increased water temperatures; and
 - c. stormwater discharge.
- 2. fish habitat impacts from:

- a. conflict between land use activities and use of flood plains as productive fish habitat;
- b. dams and impoundments on fish migration, downstream movements of stream bedload, water quality, and possibly increased water temperatures;
- c. loss of natural habitat due to channelization and stream bank hardening (urban encroachment); and
- d. perched culverts on fish movements.
- 3. fish population/community concerns:
 - a. significant reduction in brook trout populations; and
 - b. potentially incompatible fish species and/or communities (e.g. Eramosa River).

Finally, the Grand River Fisheries Management Plan identifies management strategies

for the mixed water tributaries to the Speed River. From those listed in the management

plan, the following strategies are relevant to this project:

- 1. Communication/Education/Partnerships:
 - a. work with owners of dams and impoundments to eliminate or reduce the impacts of these features on downstream fish populations and fish habitat, and
 - b. encourage tributary restoration program.
- 2. Data Collection/Assessment:
 - a. assess habitat conditions and recommend candidates for rehabilitation,
 - b. assess impacts of online ponds and develop strategies to mitigate such impacts (e.g. Eramosa River),
 - c. assess value of ponds/dams to local communities and municipalities (consider removal of barriers if ponds are of little value),
 - d. assess the social and economic benefits associated with the fish resource,
- 3. Habitat Management/Rehabilitation:
 - a. rehabilitate fish habitat with the objective of extending the coldwater attributes downstream in each system,
 - b. determine rehabilitation needs and prepare rehabilitation plans (instream and riparian zones),
 - c. improve water quality, establish stable flows and restore riparian vegetation,
 - d. consider modifications to/removal of existing barriers to fish passage,
 - e. rehabilitate degraded habitat to restore functional system, and
 - f. protect groundwater and riparian zones to maintain water quality/quantity.

4. Fish Population Management:

a. use of structures (e.g. dams) for partitioning incompatible fish species/communities (e.g., Eramosa River).

IMPACT ASSESSMENT AND MITIGATION MEASURES

For details of the preliminary design provided to NRSI for the assessment of natural environment impacts, please refer to Drawings 5.1 to 5.4 in the main report by TSH.

Direct Impacts

The proposed road widening will cause a direct impact to Clythe Creek in 2 locations (described below). The impacts will result from the proposed additional traffic lanes and associated fill placement to create stable slopes along the south side of York Road.

Clythe Creek Culvert Extension or Replacement

The extension or replacement of the culvert for Clythe Creek (at chainage 13 + 280) may result in a Harmful Alteration, Disruption, or Destruction (HADD) of fish habitat, and will be subject to approval under the federal *Fisheries Act.* . It is possible that operational statements for culvert replacements and extensions prepared by DFO as part of the new risk management framework may allow the work to proceed without a full Authorization assuming that the criteria provided in the operational statement are met. The existing concrete headwall and stormwater pipe outlet adjacent to the south side of the culvert may also need to be modified in conjunction with the culvert replacement. In addition to direct impacts within the wetted area of the creek, attention must be given to fill placement adjacent to the creek as there are steep slopes in the vicinity of the crossing and a significant amount of fill may be required

Clythe Creek Channel Relocation

Mid-way between the Clythe Creek/York Road crossing and the main driveway to the Guelph Correctional Facility, the channel will need to be relocated to accommodate the widening of York Road. The section that would be impacted lies between chainage 13 + 055 and 13 + 135. In order to construct and a new section of channel that is stable and kept well away from the road, the channel realignment will affect at a minimum, approximately 90m of existing channel length. This will result in a HADD of fish habitat that will require mitigation and/or compensation. To compensate for the loss of existing habitat, a new channel that retains the same (or greater) channel length and area of habitat should suffice. It is recommended that the proposed channel realignment extend

between the rock weirs located upstream and downstream of the area directly impacted by the York Road widening. This would result in reconstruction of approximately 135m of channel but would remove two barriers to fish movement and connect a larger section of Clythe Creek with the reaches upstream of York Road. Regardless of the specific design requirements, an authorization under the federal *Fisheries Act* will be required.

Indirect Impacts

Erosion and Sedimentation Potential Near Aquatic Habitats

The disturbance to the vegetation on lands immediately adjacent to Clythe Creek will cause indirect impact to the aquatic habitat due to elimination of existing vegetation and potential for sediment entering the water. Potential indirect impact will occur to some extent along the entire distance where Clythe Creek flows parallel to York Road. The impacts will need to be mitigated using erosion and sediment control measures, and the standard mitigation measures and operational constraints outlined in Section 5.4 of this report. It is strongly advised that the sediment and erosion control planning specifically address the areas where there is limited space between the proposed construction and Clythe Creek. Standard mitigation measures may not be sufficient in areas where there is less than 3.0m between the active construction of road slopes and the creek. Stockpiling and other construction practices should also be developed specifically for these pinch points along the York Road corridor.

Disturbance to soils on the north side of York Road also have potential to impact Clythe Creek. The ditch along the north side of York Road, and cross-drainage culverts that convey flow underneath York Road have potential to transport sediment across the road and into the creek. As such, the standard mitigation measures and operational constraints apply to all culvert inlets along York Road east of Victoria Street. A known 600mm diameter culvert crossing is found at chainage 12 + 950. Hadati Creek also flows under York Road from the north side, and must be protected from indirect impact by standard mitigation measures. Any other existing culverts will need to be identified in the detailed design, and standard mitigation measures will apply to them as well.

In some locations, grading will require slopes to be greater than 3:1 to allow a 1.5m or greater separation between fill placement and the top-of-bank of a creek. This separation will provide marginally sufficient space to install of erosion and sediment

control fencing. In these locations of steeper slopes and close proximity of fill placement, stabilization techniques such as erosion matting and seeding must occur immediately after grading is finished. This applies at the following locations:

- On the northeast side of the Clythe Creek crossing (at chainage 13 + 290),
- west of the Clythe Creek crossing from chainage 13 + 260 to 13 + 280,
- from chainage 13 + 010 to 13 + 030,
- from chainage 12 + 940 to 12 + 980, and
- from chainage 12 + 880 to 12 +900.

Lastly, the crossing of Hadati Creek does not require replacement of the culvert. However, the widening of York Road and the realignment of Elizabeth Street will involve construction adjacent to Hadati Creek. Standard mitigation measures and operational constraints will apply to these construction activities.

Adjacent Vegetated Lands

The widening of the road will result in a reduction of the amount of vegetated land surface adjacent to Clythe Creek. The existing vegetated land along the north side of the creek includes manicured grass, and trees. The trees provide shade over the creek in some places, and the manicured grass has some limited benefit to the creek. The root mass stabilizes the soil, and the grass dissipates the energy of surface water runoff from the road as it flows overland to the creek. The loss of some of these functions will be considered a minor indirect impact.

The extent of this indirect impact can be described by comparing the distance between Clythe Creek and York Road before and after the widening. West of the outlet of Unnamed Tributary 1 (at chainage 13 + 000), there is currently a range of between 8 to 20m of land between Clythe Creek and the edge of the shoulder of York Road. In this section, the widening will bring the edge of the road at a minimum, approximately 2m closer to the creek, resulting in 6 to 18m of vegetated land. The preliminary design details provided to NRSI when compared to field investigations suggest there will be some sections that will have an even closer proximity to the creek

East of the outlet of Unnamed Tributary 1, there is currently a range of approximately 18 to 28m of land between Clythe Creek and the edge of the shoulder of York Road. In this section, the widening of York Road will bring the edge of the pavement approximately 6m closer to Clythe Creek. This will result in 12 to 22m of vegetated land between the creek and the road. Where Clythe Creek is to be relocated, it is anticipated that the resulting distance to the road will be similar to the rest of this section.

There is an opportunity to mitigate the loss of vegetated land adjacent to Clythe Creek by planting natural vegetation alongside the creek. Naturally vegetated lands adjacent to a watercourse have the following benefits:

- Vegetation provides shade over the watercourse to prevent water temperatures from rising due to solar energy inputs,
- Roots of larger and more varied vegetation improve stability of soils on the banks and adjacent land,
- The vegetation provides inputs of detritus that provides nutrients for aquatic organisms,
- The vegetation is a source of large woody material that provides important aquatic habitat structure,
- Abundant shrubs and trees along the creek deter geese and reduce their impacts to the creek banks,
- Floodplains are more effective for temporary floodwater storage, and
- The natural vegetation filters overland water runoff.

Stormwater Management

Currently, stormwater management details have not been presented in the provided information. Therefore it has been assumed that the increased amount of surface area of the road will increase the amount of stormwater that runs off the road in the direction of Clythe Creek. This will result in greater capacity to convey traffic-related contaminants in the direction of Clythe Creek. This impact should be mitigated on the south side of the road by installing native herbaceous plants, shrubs and trees to create a functional filter or buffer strip between Clythe Creek and York Road. A filter strip will enhance the capacity of the land between Clythe Creek and York Road to filter stormwater runoff. This will also serve as mitigation for the loss of adjacent vegetated

land, which reduces the ability of the existing vegetation to filter stormwater runoff. This measure is consistent with management strategies 3a, 3c, 3e, and 3f of the Grand River Fisheries Management Plan (see paraphrased excerpts in this report).

To mitigate the increased stormwater runoff from the north side of the road, it is an option to install oil-grit separators to control the quality of the stormwater.

The number and locations of culverts that convey flow from the north side of York Road to the south side will not change. New culverts will replace the existing pipes, and the outlet locations will only change as a result of the required increased length to accommodate the wider road. As a result, no long-term impact is anticipated from changes in flow paths to the creek. In some cases, the replacement or extension of these culverts will increase the sedimentation potential and require active construction within close proximity to Clythe Creek.

SPECIAL CONSIDERATIONS FOR FISH COMMUNITIES

Populations of rare fish species are considered more sensitive because impacts can affect the viability of a species. The greenside darter, with an S-Rank of S4, and a status of Special Concern, is not expected to become extinct in the near future, and there is hope that it will recover. However, there is concern about the population of this fish species, which calls for diligent application of the mitigation measures and operational constraints recommended in this report. This diligence should be sufficient to ensure that the construction activities do not impact the aquatic habitat in the study area in any way that would be detrimental to a greenside darter population.

The interest by Trout Unlimited Canada in the brook trout potential of Clythe Creek confirms that it has potential to provide a valuable resource. This gives further reason to be diligent in applying the recommended mitigation measures and operational constraints.

Standard Mitigation Measures and Operational Constraints

During construction, standard mitigation measures and operational constraints will apply to protect the aquatic habitats against erosion and sedimentation, and other risks such as fuel and lubricants from equipment. They are as follows:

- Sediment and erosion control measures should be installed and maintained throughout the construction period. Disturbed soils should be stabilized immediately with suitable plantings/seed/mat.
- 2. Stockpile and staging areas should be well removed from the watercourse and contained by appropriate sediment and erosion controls.
- 3. Dewatering of any excavations, pits or chambers must be done in a controlled manner so as not to discharge turbid water to watercourses or other aquatic features. Dewatering operations shall be directed to areas above ground and could include containment areas constructed with silt fence/strawbales and/or filter bag on existing vegetation. Where necessary, other techniques such as defractionation tanks or chemical flocculants shall be used. Suitable containment areas must be identified prior to any work commencing.

- 4. Where waterflow is to be pumped, screening shall be provided so as to prevent entry or damage fish at the intake, and discharge shall be directed so as to avoid erosion of the watercourse bed and banks at the water outlet. Water flow downstream must be maintained with a minimal amount of turbidity both from pumps and from associated construction activities.
- 5. For instream works, the area of disturbance within the channel and on the streambanks must be kept to a minimum. Heavy equipment traffic will be restricted to established travel pathways.
- 6. All timing restrictions, such as fisheries timing windows assigned by the MNR, must be adhered to.
- 7. Refueling activities should be conducted in an environmentally responsible manner. This includes a keeping the fueling operations 30 m setback from the waters edge, unless otherwise directed by the Environmental Monitor/Contract Administrator. Spill kits and sorbant material should be available on the fuel or service vehicles.
- 8. Any spills resulting from refueling operations, hydraulic leaks, maintenance etc. must be reported immediately to the Contact Administrator or Environmental Monitor who will then notify the Spills Action Centre if required.
- Weather conditions should be monitored to adequately prepare the site for rain events.
- Environmental monitoring must be conducted throughout the construction period. Post-construction monitoring should also be carried out to ensure that plantings become established and soils remain stabilized.

RECOMMENDATIONS

Based on the findings of this report, we make the following recommendations.

- 1. All mitigation measure provided in this report should be implemented.
- 2. Standard mitigation measures and operational constraints provided in this report should be employed as applicable throughout the construction period.
- 3. The section of channel to be realigned should be constructed using Natural Channel Design principles.
- 4. A *Fisheries Act* authorization will be required for the channel realignment, and possibly the culvert extension/replacement at the crossing of York Road and Clythe Creek.
- 5. Native herbaceous plants, shrubs and trees should be installed to create a filter strip between Clythe Creek and York Road, and to enhance the aquatic habitat in Clythe Creek. This will serve as mitigation for the loss of adjacent vegetated land and increased volume of stormwater runoff that will result from the road widening.

REFERENCES

- D'Amelio, Silvia. 2006. Personal Communication regarding the efforts of the Speed Valley Chapter of Trout Unlimited Canada to determine the current status of brook trout in Clythe Creek. September 18, 2006.
- DFO. 2001. Letter regarding the report for Licence to Collect Fish for Scientific Purposes, Licence No. FW2001-18, for the year 2001. December 11, 2001.
- Eakins, R. J. 2005. Ontario Freshwater Fishes Life History Database. Version 2.80. On-line database. (<u>http://www.fishdb.ca</u>)
- Ecologistics Ltd., and Blackport and Associates. 1998. Clythe Creek Subwatershed Overview, January 1998.
- GRCA. 1972. Water Quality Survey of the Speed and Eramosa Rivers. By P. Mason & A. Sandilunds.
- GRCA. 1990. Exploratory Electrofishing by GRCA Environmental Services Fisheries. May 2 and 3, 1990.
- GRCA. 2006. Letter from Chris Powell, Subwatershed Planning Coordinator, Grand River Conservation Authority. To: Andrew Schiedel, NRSI. Re: Class EA for York Road – Wyndham Street to East City Llimits, City of Guelph. May 29, 2006.
- GRCA & MNR. 1998. Grand River Fisheries Management Plan. Available at MNR Guelph district office, or GRCA office in Cambridge, Ontario. September 1998.
- Humphreys 1981. Record of fish collection under scientific permit for various locations in the Grand River and Thames River Drainage. MNR file information.
- MNR, Unknown Date. Speed River and Galt Creek Watershed Map, Grand River Basin: Brook Trout Distributions. Included in files at the MNR Guelph District Office accessed June 2006.
- MNR. 1994. Aquatic Habitat Inventory Stream Survey Summary. Clythe Creek Reformatory Tributary. August 30, 1994.
- MNR. 2001. Inspection by Art Timmerman of the lower Clythe Creek, and Hadati Creek. March 23, 2001.
- MNR. 2006a. Personal communication with Art Timmerman, Guelph District Office. June 8, 2006.
- MNR. 2006b. Personal communication with Donald Kirk, Species At Risk Biologist, MNR Guelph District Office. September 18, 2006.
- NHIC. 2006. Natural Heritage Information Centre website. Accessed June 9, 2006 at http://nhic.mnr.gov.on.ca/MNR/nhic/elements/el_report.cfm?elid=180638
- University of Guelph. 2006. Letter to MNR Guelph District. Report for licence to collect fish for scientific purposes # 1024092, for the year 2005, obtained for a study by Ackerman, Mackie and McNichols: Fish Host Identification and Rearing of Juvenile Unionid Species at Risk in Recovery Habitat in Southern Ontario Rivers. January 25, 2006.

Photo 1 – Clythe Creek, example of the many weirs in the study area

Photo 2 – Clythe Creek, Reach 1, looking downstream

Natural Resource Solutions Inc. Appendix I - Photographs

Photo 3 – Clythe Creek, Reach 2, looking upstream toward York Road crossing

Photo 4 – Clythe Creek, Reach 3, looking upstream

Natural Resource Solutions Inc. Appendix I - Photographs

Photo 5 – Clythe Creek, Reach 4, looking downstream toward Hadati Cr. outlet and ponds

Photo 6 – Clythe Creek, Reach 4, abundant aquatic plants in the online ponds

Natural Resource Solutions Inc. Appendix I - Photographs

Photo 7 – Connection between the north pond and Reach 3 of Clythe Creek

Photo 8 – Fisherman at Guelph Correctional Facility Ponds, looking south from Clythe Cr.

Natural Resource Solutions Inc. Appendix I - Photographs

Photo 9 – South Pond, looking southwest

Photo 10 – Hadati Creek, Reach 1, looking upstream

Natural Resource Solutions Inc. Appendix I - Photographs

658

October 26, 2006

Mr. Ernst Heinrichs Totten Sims Hubicki Associates 72 Victoria Street South Kitchener, Ontario N2G 4Y9

Dear Mr. Heinrichs:

Re: Tree Management Plan – York Road, City of Guelph.

Natural Resource Solutions Inc. was retained to prepare a tree management plan consistent with the City of Guelph Tree Management Guidelines for the lands adjacent to a length of York Road, Guelph, Ontario. This work was undertaken as part of a Class Environmental Assessment for the proposed widening of a section of York Road. The original study area included both sides of York Road from Skyway Drive in the east to the western limit of York Road just west of Wyndham Street. It included Wyndham Street from York Road to Wellington Road. The initial assessment work was completed for this study area as depicted in the base survey provided by Totten Sims Hubicki Associates (TSH). Since that time, the study area has been reduced and consists of York Road from Victoria Street in the west to Skyway Drive in the east. This report only addresses this smaller study area, however the appended tree table shows all trees.

A Certified Arborist from Natural Resource Solutions Inc. visited the site on June 5, 16 and 19, 2006 to map and describe the trees in the proximity of the proposed undertakings. The following is a description of our findings.

A base survey was used to locate each of the surveyed trees. The attached copy of the plan shows the numbers and locations of the trees that were assessed. For each tree evaluated, species, diameter at breast height (dbh), crown radius and condition were recorded. Notes were also made on significant defects and other features of interest.

A table summarizing this information is appended to this letter. Those trees in the table that do not appear on the preliminary drawings are located on York Road west of Victoria Road and are not impacted by the recommended improvements.

Analysis of Potential Impacts to Trees

The preliminary design provided by TSH on September 13, 2006 was compared to the locations and characteristics of the trees within the study area. Trees were assessed individually using field measurements, a scale and the preliminary drawing. Please refer to Drawings 5.5 to 5.12 in the main report by TSH for the preliminary design.

A total of 204 trees comprising 20 species were evaluated within the smaller study area. No rare tree species were found in this area. The condition of the trees ranged from poor to good; some snags (standing dead trees) were also documented. Common defects in the trees with poor health included trunk wounds, weak forks, dead branches and past evidence of 'topping'. The trunk sizes ranged from less than 10cm dbh to 168cm dbh. The crown radii ranged from 1.5m to 12m.

The preliminary design proposes to widen York Road. This widening will require the removal of the trees within the construction footprint as well as those with significant portions of root zones extending into this construction area. This was assessed by comparing the actual tree crown radii to the proposed grading. Recommendations are provided below to minimize impacts to the trees to be retained.

Summary

The proposed widening of York Road between Skyway Drive and Victoria Street will result in the loss of 44 trees. An additional number of trees (2) were identified for removal due to their potential hazard condition and/or their poor condition. This included trees that will lose significant (> 25%) portions of their root systems. It should be noted however, that all trees have an inherent risk and warrant care and arboricultural management. A number of the trees to be retained along the construction edge may require some arboricultural attention. In a number of locations, limbs and roots were noted to overlap with the proposed road extension. These overlaps are not anticipated to result in significant impact to the retained trees if appropriate tree protection and care is implemented.

Tree protection measures should be installed prior to any clearing or other work. This will include but not be limited to the installation of tree protection and silt fencing along the proposed construction limit, inspection of the proposed fencing location before installation and after / before cutting, and installation of appropriate signage to mark the tree protection zones. As well, limbs and roots that are impacted by construction should be pruned and treated following standard arboricultural practices. Storage of materials and equipment must not occur within the dripline of trees to be retained.

Yours sincerely, Natural Resource Solutions Inc.

hood

Brett Woodman, M.E.S. Certified Arborist / Terrestrial Biologist

TREE INVENTORY

				Crown				
Тгее	-		2	Radius	2		Retain /	Desses for action taken
	Species	Scientific Name	(cm)	(m)	Condition	Comments	Remove	Reason for action taken
1	Norway Maple	Acer platanoides	16	8	Good		retain	outside construction footprint
2	Norway Maple	Acer platanoides	60	7	Fair	frost cracks present	remove	in construction footprint
3	Norway Maple	Acer platanoides	75	7	Fair	forks with included bark	retain	outside construction footprint outside construction footprint
4	Austrian Pine	Pinus nigra	27	5	Good		retain	
5	Austrian Pine	Pinus nigra	17	4	Good		retain	outside construction footprint
6	Austrian Pine	Pinus nigra	26	5	Good		retain	outside construction footprint
7	Maple	Acer sp.	18	8	Poor	multi-stemmed clump; crown dieback; frost cracks	retain	outside construction footprint
8	Norway Maple	Acer platanoides	30	4	Good		retain	outside construction footprint
9	Austrian Pine	Pinus nigra	33	4	Fair	structure poor	retain	outside construction footprint
10	Austrian Pine	Pinus nigra	23	3.5	Good		retain	outside construction footprint
11	Scott's Pine	Pinus sylvestris	29	3.5	Good		retain	outside construction footprint
12	Norway Maple	Acer platanoides	27	4	Fair	some bark damage	retain	outside construction footprint
13	Austrian Pine	Pinus nigra	20	3.5	Good		retain	outside construction footprint
14	Austrian Pine	Pinus nigra	24	3.5	Good		retain	outside construction footprint
15	Honey Locust	Gleditsi triacanthos var. inermis	27	5	Fair	some crown dieback	retain	outside construction footprint
16	Honey Locust	Gleditsi triacanthos var. inermis	24	5	Fair	some crown dieback	retain	outside construction footprint
17	Norway Maple	Acer platanoides	26	4	Good		retain	outside construction footprint
18	Blue Spruce	Picea pungens	27	3	Good		retain	outside construction footprint
19	White Spruce	Picea glauca	26	2	Good		retain	outside construction footprint
20	Blue Spruce	Picea pungens	27	3	Good		retain	outside construction footprint
21	Blue Spruce	Picea pungens	20	3	Good		retain	outside construction footprint
22	Norway Maple	Acer platanoides	27	4	Fair	some crown dieback	retain	outside construction footprint
23	Blue Spruce	Picea pungens	31	4	Good		retain	outside construction footprint
24	Honey Locust	Gleditsi triacanthos var. inermis	30	5.5	Fair		retain	outside construction footprint
25	White Spruce	Picea glauca	20	3	Fair	some crown dieback	retain	outside construction footprint
26	Blue Spruce	Picea pungens	14	2.5	Good		retain	outside construction footprint
27		Rhamnus cathartica	10	3	Good		remove	in construction footprint
28	Scott's Pine	Pinus sylvestris	21	2.5	Good		retain	outside construction footprint
29	Norway Maple	Acer platanoides	31	3.5	Good	2 stems	retain	in construction footprint
30	Sugar Maple	Acer saccharum	24	4.5	Fair	epicormic branching	remove	in construction footprint
31	Norway Maple	Acer platanoides	45	5.5	Good	forking (< or = 30%)	remove	in construction footprint
32	Silver Maple	Acer saccharinum	65	7	Fair	some crown dieback	remove	in construction footprint
33	Norway Maple	Acer platanoides	70	7	Good	imbedded wire	remove	in construction footprint
33	Silver Maple	Acer saccharinum	80	9	Fair		remove	in construction footprint
34 35	Silver Maple	Acer saccharinum Acer saccharinum	64	9	Good		remove	in construction footprint
35 36	Silver Maple	Acer saccharinum Acer saccharinum	80	8	Fair	forking (< or = 30%)	remove	significant root loss
30	•	Acer platanoides	10	1.5	Good		retain	outside construction footprint
-	Norway Maple		64	1.5	Fair		remove	significant root loss
38	Silver Maple	Acer saccharinum		0 1		teened: significant bark damage:	retain	outside construction footprint
39	White Cedar	Thuja occidentalis	43	•	Fair	topped; significant bark damage;	retain	outside construction footprint
40	Norway Maple	Acer platanoides	10	0.5	Fair	f_{1}		outside construction footprint
41	White Cedar	Thuja occidentalis	75	4	Good	forking (< or = 30%)	retain	outside construction footprint
42	White Elm	Ulmus americana	26	4.5	Good	forking (< or = 30%)	retain	outside construction footprint
43	White Cedar	Thuja occidentalis	30	2.5	Poor	crown dieback	retain	outside construction rootprint

Tree			dbh	Crown Radius			Retain /	
	Species	Scientific Name	(cm)	(m)		Comments	Remove	Reason for action taken
44	Norway Maple	Acer platanoides	10	1	Fair	significant bark damage	retain	outside construction footprint
45	Little-leaved Linden	Tilia cordata	16	2.5	Good		retain	outside construction footprint
46	Little-leaved Linden	Tilia cordata	15	2	Good		retain	outside construction footprint
47	White Spruce	Picea glauca	19	2	Good		retain	outside construction footprint
48	White Spruce	Picea glauca	19	2	Good		retain	outside construction footprint
49	Honey Locust	Gleditsi triacanthos var. inermis	15	4.5	Fair		retain	outside construction footprint
50	Austrian Pine	Pinus nigra	20	2.5	Good		retain	outside construction footprint
51	Austrian Pine	Pinus nigra	21	2.5	Good		retain	outside construction footprint
52	Austrian Pine	Pinus nigra	19	2	Fair		retain	outside construction footprint
53	White Spruce	Picea glauca	17	2	Good		retain	outside construction footprint
54	Blue Spruce	Picea pungens	17	1.5	Good		retain	outside construction footprint
55	Norway Maple	Acer platanoides	17	3	Good		retain	outside construction footprint
56	White Spruce	Picea glauca	17	1	Good		retain	outside construction footprint
57	Blue Spruce	Picea pungens	16	1.5	Good		retain	outside construction footprint
58	Silver Maple	Acer saccharinum	59	7	Poor	crown dieback	remove	in construction footprint
59	Silver Maple	Acer saccharinum	67	8	Fair-Poor	cavities	remove	in construction footprint
60	Silver Maple	Acer saccharinum	64	7	Poor	crown dieback	remove	in construction footprint
61	Silver Maple	Acer saccharinum	64	8	Fair		remove	in construction footprint
62	Silver Maple	Acer saccharinum	62	8	Fair	some crown dieback	remove	significant root loss
63	Norway Maple	Acer platanoides	65	7	Fair	forking (< or = 30%); 15" leaner	remove	significant root loss
64	White Elm	Ulmus americana	15	3	Good	forking ($< \text{ or } = 30\%$)	retain	outside construction footprint
65	White Cedar	Thuia occidentalis	41	3	Good		retain	outside construction footprint
66	White Elm	Ulmus americana	36	7	Good	forking (< or = 30%)	remove	fill and grading in root zone
67	White Spruce	Picea glauca	42	3	Good		retain	outside construction footprint
68	Norway Maple	Acer platanoides	13	2.5	Good	2 stems	retain	outside construction footprint
69	White Cedar	Thuia occidentalis	15	15	Good	multi-stemmed clump	retain	outside construction footprint
70	White Elm	Ulmus americana	10	10	Snag		remove	existing hazard
70	Silver Maple	Acer saccharinum	22	4	Good	forking (< or =30%)	retain	outside construction footprint
72	Silver Maple	Acer saccharinum Acer saccharinum	23	4	Fair	significant bark damage	retain	outside construction footprint
73	European Buckthom		19	7	Good	forking (< or = 30%)	retain	outside construction footprint
74	White Cedar	Thuja occidentalis	36	5.5	Good	forking ($< \text{ or } = 30\%$)	retain	outside construction footprint
74	White Elm	Ulmus americana	21	3	Fair	major crook in trunk stem	retain	outside construction footprint
75 76	Blue Spruce	Picea pungens	31	3	Good	major crock in trank stem	retain	outside construction footprint
76 77	White Elm	Ulmus americana	18	6	Good	multi-stemmed clump	retain	outside construction footprint
77 78	White Elm	Ulmus americana	18	5	Fair-Poor	multi-stemmed clump; primary fungal disease presen		outside construction footprint
79	White Elm	Ulmus americana	44	9	Good	main-steinined clamp, primary langer dicease procen	remove	significant root loss
80		Malus sp	30	5.5	Fair		retain	outside construction footprint
81	European Buckthorn		11	3.5	Fair	poor structure	retain	outside construction footprint
82	White Cedar		13	3.5	Good	hoor annorme	retain	outside construction footprint
		Thuja occidentalis	13	2	Fair	under hydro-pruned	retain	outside construction footprint
83	White Cedar	Thuja occidentalis	16	2	Fair	under hydro-pruned	retain	outside construction footprint
84	White Cedar	Thuja occidentalis		2 1.5	Fair Fair		retain	outside construction footprint
85	White Cedar	Thuja occidentalis	15			under hydro-pruned	retain	outside construction footprint
86	White Cedar	Thuja occidentalis	12	1.5	Fair			outside construction footprint
87	White Cedar	Thuja occidentalis	19	2	Fair	by hydro - pruned	retain	outside construction rootprint

Tree			dbh	Radius	;		Retain /	
	Species	Scientific Name	(cm)	(m)	Condition	Comments	Remove	Reason for action taken
89	White Cedar	Thuja occidentalis	24	2.5	Fair	by hydro - pruned	retain	outside construction footp
90	White Cedar	Thuja occidentalis	16	3	Fair	2 stems; by hydro	retain	outside construction footp
91	White Cedar	Thuia occidentalis	13/10	1	Good	2 stems	retain	outside construction footp
92	White Cedar	Thuia occidentalis	22	1	Fair	2 stems; topped by hydro	retain	outside construction footp
93	White Cedar	Thuja occidentalis	11	1	Fair	in hydro lines	retain	outside construction footp
94	White Cedar	Thuja occidentalis	49	3	Good	·	retain	outside construction footp
95	White Cedar	Thuja occidentalis	24	2	Good		retain	outside construction footp
96	White Cedar	Thuja occidentalis	41	2.5	Poor	significant bark damage	retain	outside construction footp
97	White Elm	Ulmus americana	22	3	Good	forking (< or = 30%)	retain	outside construction footp
98	White Elm	Ulmus americana	14	3.5	Good	forking (< or = 30%)	retain	outside construction footp
99	White Elm	Ulmus americana	10	1.5	Good	forking (< or = 30%)	retain	outside construction footp
100	White Elm	Ulmus americana	11	1.5	Good	directly under hydro	retain	outside construction footp
101	White Elm	Ulmus americana	28	1.5	Good		retain	outside construction footp
102	White Elm	Ulmus americana	18	2	Good		retain	outside construction footp
103	White Cedar	Thuja occidentalis	35	3.5	Poor	multi-stemmed clump; significant bark damage	retain	outside construction footp
104	White Elm	Ulmus americana	12	1.5	Good	J	retain	outside construction footp
105	White Elm	Ulmus americana	13	1.5	Good		retain	outside construction footp
106	White Elm	Ulmus americana	19	1.5	Good		retain	outside construction footp
107	White Elm	Ulmus americana	12	1	Good		retain	outside construction footp
108	White Elm	Ulmus americana	12	1	Good		retain	outside construction foot
109	White Elm	Ulmus americana	25	2	Good		retain	outside construction foot
110	White Elm	Ulmus americana	16	1.5	Good	2 stems	retain	outside construction footp
111	Pear	Pyrus communis	41	4	Good		retain	outside construction footp
112	White Cedar	Thuja occidentalis	27	2.5	Fair	multi-stemmed clump; 1 stem top broken	retain	outside construction footp
113	White Cedar	Thuja occidentalis	35	2.5	Poor	2 stems= snag @ 2.5m	retain	outside construction foot
114	Blue Spruce	Picea pungens	24	1.5	Good		retain	outside construction foot
115	Blue Spruce	Picea pungens	19	1.5	Good		retain	outside construction foot
116	White Cedar	Thuja occidentalis	45	2	Poor	originally 4 stems now 1 remaining; bark damage	retain	outside construction foot
117	Norway Spruce	Picea abies	45	3	Good	onginally i diama non i remaining, sam asing	retain	outside construction footp
118	European Buckthorn	Rhamnus cathartica	11	2.5	Good	multi-stemmed clump	retain	outside construction foot
119	Norway Spruce	Picea abies	55	3.5	Good		retain	outside construction foot
120	Norway Spruce	Picea abies	44	3	Good		retain	outside construction foot
121	White Cedar	Thuja occidentalis	10	1	Good		retain	outside construction foot
122	Norway Spruce	Picea abies	45	3.5	Good		retain	outside construction footp
123	Norway Spruce	Picea abies	21	2	Good		retain	outside construction foot
124	Norway Spruce	Picea abies	39	3	Good		retain	outside construction foot
125	European Buckthorn	Rhamnus cathartica	15	3.5	Poor		remove	outside construction foot
126	Norway Spruce	Picea abies	33	3	Good		retain	outside construction foot
120	Manitoba Maple	Acer negundo	29	4.5	Poor		remove	outside construction footp
128	Norway Spruce	Picea abies	39	4	Good		retain	outside construction footp
120	Norway Spruce	Picea abies	28	3.5	Good		retain	outside construction footp
129	White Elm	Ulmus americana	20	4	Fair	forking (< or = 30%)	retain	outside construction foot
130	Norway Spruce	Picea abies	20	3.5	Good		retain	outside construction footp
	Norway Spruce	Picea abies	30	3.5	Good		retain	outside construction foot
132 133	White Elm	Ulmus americana	30 11	3.5 2	Good		retain	outside construction foot

_			ما ا م ا	Crown			Retain /	
Tree	Casalas	Scientific Name	(cm)	Radius (m)		Comments	Remove	Reason for action taken
134	Species White Elm	Ulmus americana	54	3	Fair	forking (< or = 30%); canopy sparce	retain	outside construction footprir
135	Serviceberry	Amelanchier	19	1.5	Good	lonking (+ or - oo xy, ouropy operoo	retain	outside construction footprir
136	Red Oak	Quercus rubra	20	4.5	Good		retain	outside construction footprin
137	Red Oak	Quercus rubra	17	4	Good	forking (< or = 30%)	retain	outside construction footprin
138	Red Oak	Quercus rubra	21	5	Fair	evidence of past biological infestation	retain	outside construction footprin
139	Red Oak	Quercus rubra	25	8	Good		retain	outside construction footprin
140	Red Oak	Quercus rubra	20	4	Good		retain	outside construction footprin
141	Red Oak	Quercus rubra	12	2	Good		retain	outside construction footprin
142	Siberian Elm	Ulmus pumila	20	3	Good	2 stems		
143	Siberian Elm	Ulmus pumila	12	2	Good			
144	Little-leaved Linden	Tilia cordata	37	5	Good	multi-stemmed clump		
145	Sugar Maple	Acer saccharum	59	6	Fair	imbedded wire		
146	Sugar Maple	Acer saccharum	65	9	Fair	cavities		
147	Norway Maple	Acer platanoides	37	4.5	Fair	directly under hydro;V-pruned		
148	Siberian Elm	Ulmus pumila	65	7.5	Poor			
149	Sugar Maple	Acer saccharum	55	4.5	Poor			
150	Norway Maple	Acer platanoides	28	3	Poor	poor structure; V-pruned		
151	Norway Maple	Acer platanoides	27	2	Poor	under hydro		
152	Norway Maple	Acer platanoides	14	1	Good			
153	Norway Maple	Acer platanoides	30	4	Good			
154	Norway Maple	Acer platanoides	62	5.5	Good			
155	Norway Maple	Acer platanoides	68	5	Fair	structure fair		
156	Silver Maple	Acer sacchannum	64	8	Fair	forking (< or = 30%); some canopy dieback		
157	White Elm	Ulmus americana	51	7	Fair-Poor	some canopy dieback		
158	Crab Apple	Malus baccata	25	4	Good			
159	Black Locust	Robinia pseudoacacia	24	3	Good			
160	Norway Maple	Acer platanoides	62	5	Fair	fair structure		
161	Crab Apple	Malus baccata	27	3	Good			
162	Norway Maple	Acer platanoides	44	5	Good			
163	Magnolia	Magnoliaceae	12	3.5	Good			
164	Silver Maple	Acer saccharinum	54	7	Fair-Good			
165	Honey Locust	Gleditsi triacanthos var. inermis	34	5	Good			
166	Red Ash	Fraxinus pennsylvanica	39	5	Good			
167	Honey Locust	Gleditsi triacanthos var. inermis	28	5	Good			
168	Honey Locust	Gleditsi triacanthos var. inermis	27	5	Fair	forking (< or = 30%); some canopy dieback		
16 9	White Cedar	Thuja occidentalis	15	1	Good	2 stems		
170	Siberian Elm	Ulmus pumila	15	3.5	Good	multi-stemmed clump		
171	Red Cedar	Juniperus virginiana	15	1	Good			
172	Honey Locust	Gleditsi triacanthos var. inermis	60	8	Poor	significant bark damage; cavities		
173	Sugar Maple	Acer saccharum	14	2.5	Fair	sparse canopy		
174	Japanese Horseches	•	55	4	Fair	some dieback		
175	Norway Spruce	Picea abies	34	4	Poor	90% dead		
176	Silver Maple	Acer saccharinum	60	9	Fair			
177	Honey Locust	Gleditsi triacanthos var. inermis	35	5	Fair	sparse canopy		- 4) -
178	Silver Maple	Acer saccharinum	107	9	Poor	crown dieback		

Tree			dbh	Radius	5		Retain /	
Number		Scientific Name	(cm)	(m)	Condition	Comments	Remove	Reason for action take
	Silver Maple	Acer saccharinum	34	6.5	Poor	crown dieback		
180	Silver Maple	Acer saccharinum	62	8	Good			
181	Silver Maple	Acer saccharinum	40	7	Good			
182	Silver Maple	Acer saccharinum	140	10	Fair	some canopy dieback		
183	Blue Spruce	Picea pungens	26	1	Fair	topped		
184	Silver Maple	Acer saccharinum	59	6	Good			
185	Silver Maple	Acer saccharinum	108	10	Good			
	Norway Maple	Acer platanoides	21	4	Good			
187	White Elm	Ulmus americana	38	5	Fair			
188	White Elm	Ulmus americana	27	4	Poor			
189	White Cedar	Thuja occidentalis	15	1	Good			
190	Silver Maple	Acer saccharinum	80	8	Poor	crown dieback		
191	Crab Apple	Malus baccata	24	6	Good	3 stems		
192	Honey Locust	Gleditsi triacanthos var. inermis	28	5	Good			
193	Silver Maple	Acer saccharinum	61	8	Good			
194	Silver Maple	Acer saccharinum	89	8	Good			
195	Sugar Maple	Acer saccharum	66	6.5	Good			
196	Silver Maple	Acer saccharinum	88	8	Good			
	White Birch	Betula papyrifera	20	3	Good	3 stems		
198	White Spruce	Picea glauca	22	2.5	Good			
199	Silver Maple	Acer saccharinum	119	10	Good			
200	Norway Maple	Acer platanoides	31	4	Good			
	Norway Maple	Acer platanoides	37	5	Good			
	Silver Maple	Acer saccharinum	101	9	Good			
	Norway Maple	Acer platanoides	70	9	Good			
	Norway Maple	Acer platanoides	64	8	Good			
	Norway Maple	Acer platanoides	40	7	Fair	15 degree leaner		
	Silver Maple	Acer saccharinum	59	8	Good			
	Norway Maple	Acer platanoides	26	7	Good			
	Silver Maple	Acer saccharinum	67	7	Fair	some canopy dieback		
	Norway Maple	Acer platanoides	39	6	Good	anish) areaser		
	Silver Maple	Acer saccharinum	93	9.5	Good			
	Silver Maple	Acer saccharinum	69	8	Good			
	Norway Maple	Acer platanoides	33	5	Good			
	Norway Maple	Acer platanoides	39	6	Good			
	Cottonwood	Populus sp	28	4.5	Poor	60% dead		
	Cottonwood	Populus sp	39	7	Fair	2-stem; leaner; some crown dieback		
	Cottonwood	Populus sp	94	7	Fair			
	Silver Maple	Acer saccharinum	109	7	Fair-Poor	crown dieback		
	Silver Maple	Acer saccharinum	104	11	Good			
	Silver Maple	Acer saccharinum Acer saccharinum	103	10	Good			
	Silver Maple	Acer saccharinum Acer saccharinum	61	9	Good			
	Silver Maple	Acer saccharinum Acer saccharinum	63	6.5	Good			
	Silver Maple	Acer saccharinum Acer saccharinum	60	7.5	Good			
	Silver Maple	Acer saccharinum Acer saccharinum	64	8	Good			

Tree			dbh	Radius	i		Retain /	
Number	Species	Scientific Name	(cm)	(m)	Condition	Comments	Remove	Reason for action taken
224	Silver Maple	Acer saccharinum	87	8	Good			
225	Silver Maple	Acer saccharinum	91	10	Good			
226	Silver Maple	Acer saccharinum	99	8	Good			
227	Silver Maple	Acer saccharinum	94	7	Good			
228	Silver Maple	Acer saccharinum	130	9.5	Fair			
229	Silver Maple	Acer saccharinum	102	9.5	Good			
230	Silver Maple	Acer saccharinum	96	7	Good			
231	Silver Maple	Acer saccharinum	100	7	Good			
232	Silver Maple	Acer saccharinum	87	6	Good			
233	Silver Maple	Acer saccharinum	88	9	Fair			
234	Silver Maple	Acer saccharinum	73	9	Good			
235	Silver Maple	Acer saccharinum	79	8.5	Good			
236	Silver Maple	Acer saccharinum	84	8	Poor	crown dieback		
237	Silver Maple	Acer saccharinum	50	5.5	Good			
238	Silver Maple	Acer saccharinum	57	7	Good			
239	Silver Maple	Acer saccharinum	66	6.5	Good			
240	Norway Maple	Acer platanoides	39.5	3	Good			
241	Silver Maple	Acer saccharinum	23	2.5	Poor			
242	Silver Maple	Acer saccharinum	24	3	Fair	some crown dieback		
243	Silver Maple	Acer saccharinum	42	4.5	Good			
244	Silver Maple	Acer saccharinum	58	7	Good			
245	Norway Maple	Acer platanoides	67	7	Poor	hydro- Pruned-V		
246	Norway Maple	Acer platanoides	60	7	Poor	hydro- Pruned-V		
247	Norway Maple	Acer platanoides	24	4.5	Poor	crown damaged		
248	Honey Locust	Gleditsi triacanthos var. inermis	27	3.5	Good			
249	Honey Locust	Gleditsi triacanthos var. inermis	24	2.5	Good			
250	Honey Locust	Gleditsi triacanthos var. inermis	19.5	2.5	Good			
251	Honey Locust	Gleditsi triacanthos var. inermis	22.5	3.5	Good			
252	Honey Locust	Gleditsi triacanthos var. inermis	21	2	Good			
253	Crab Apple	Malus baccata	16.5	2.5	Good			
254	Crab Apple	Malus baccata	15	1	Good			
255	Honey Locust	Gleditsi triacanthos var. inermis	29	4	Good			
256	Honey Locust	Gleditsi triacanthos var. inermis	34	4.5	Good			
257	Crab Apple	Malus baccata	21	4	Good			
258	Honey Locust	Gleditsi triacanthos var. inermis	30	7	Good			
259	Honey Locust	Gleditsi triacanthos var. inermis	31	6	Good			
260	Crab Apple	Malus baccata	20.5	2.5	Good			
261	Norway Maple	Acer platanoides	34	5.5	Good			
262	Silver Maple	Acer saccharinum	16.5	2.5	Poor	crown dieback		
263	Blue Spruce	Picea pungens	24	1.5	Good			
264	Red Ash	Fraxinus pennsylvanica	19	3.5	Good			
265	Red Ash	Fraxinus pennsylvanica	36	5.2	Fair			
266	Honey Locust	Gleditsi triacanthos var. inermis	26	4.5	Good			
267	Blue Spruce	Picea pungens	22	1.5	Good			
268	Manitoba Maple	Acer negundo	37.5	6.5	Good			

				Crown				
Ггее			dbh	Radius			Retain /	
Number	Species	Scientific Name	(cm)	(m)	Condition	Comments	Remove	Reason for action taken
269	Crab Apple	Malus baccata	25	3	Good			
270	Red Ash	Fraxinus pennsylvanica	26	6.5	Good			
271	Ornamental Cherry	Prunus sp	12	1.5	Good			
72	Norway Maple	Acer platanoides	22	3	Good			
73	Silver Maple	Acer saccharinum	54	10	Poor	frost crack		
74	Crab Apple	Malus baccata	34.5	3.5	Good			
75	Crab Apple	Malus baccata	22.5	4.5	Good			
76	Honey Locust	Gleditsi triacanthos var. inermis	39.5	6.5	Good			
77	Honey Locust	Gleditsi triacanthos var. inermis	47	6.5	Good			
78	Norway Maple	Acer platanoides	23	7.5	Fair			
79	Norway Maple	Acer platanoides	52	7	Good			
80	Little-leaved Linden	Tilia cordata	57	8.5	Good			
81	Little-leaved Linden	Tilia cordata	79	5	Good			
82	Norway Maple	Acer platanoides	25	3	Good			
33	Norway Maple	Acer platanoides	56	6.5	Good			
34	Norway Maple	Acer platanoides	43	8	Good			
35	Crab Apple	Malus baccata	13	2	Good			
86	Norway Maple	Acer platanoides	12	0.5	Good			
37	Norway Maple	Acer platanoides	58.5	9	Good			
8	Norway Maple	Acer platanoides	34	7.5	Good			
9	Norway Maple	Acer platanoides	29	3	Good			
0	White Spruce	Picea glauca	27	2	Good			
1	Silver Maple	Acer saccharinum	66	8	Good			
2	Silver Maple	Acer saccharinum	63	9	Good			
3	Silver Maple	Acer saccharinum	54	10.5	Poor	broken crown (mechanical)		
4	Norway Maple	Acer platanoides	36	7	Fair			
5	Siberian Elm	Ulmus pumila	18	2	Fair	multi-stemmed clump		
6	Siberian Elm	Ulmus pumila	41	6.5	Fair	2 stems		
7	Norway Maple	Acer platanoides	30	5	Fair			
8	Norway Maple	Acer platanoides	33	6	Good			
9	Norway Maple	Acer platanoides	11.5	4	Good			
0	Siberian Elm	Ulmus pumila	13	1.5	Good	multi-stemmed clump		
)1	Siberian Elm	Ulmus pumila	19.5	3.5	Good	multi-stemmed clump		
)2	Siberian Elm	Ulmus pumila	22	3.5	Good	multi-stemmed clump	retain	outside construction footprint
)3	Siberian Elm	Ulmus pumila	18.5	3.5	Good	multi-stemmed clump	retain	outside construction footprint
)4	Siberian Elm	Ulmus pumila	21	3.5	Good		remove	in construction footprint
)5	Siberian Elm	Ulmus pumila	13.5	2.5	Good		remove	in construction footprint
)6	Norway Maple	Acer platanoides	25.5	4	Good		retain	outside construction footprint
)7	Norway Maple	Acer platanoides	25.5	4	Good		retain	outside construction footprint
08	Norway Maple	Acer platanoides	24.5	4	Good		retain	outside construction footprint
)9	Norway Maple	Acer platanoides	31	5	Good		retain	outside construction footprint
10	White Cedar	Thuja occidentalis	24.5	2.5	Good	multi-stemmed clump	retain	outside construction footprint
11	White Cedar	Thuja occidentalis	24.5	3	Good	multi-stemmed clump	retain	outside construction footprint
2	White Cedar	Thuja occidentalis	15.5	2	Good	multi-stemmed clump	retain	outside construction footprint
13	White Cedar	Thuja occidentalis	16	1.5	Poor	multi-sternmed clump; crown dieback; frost cracks	retain	outside construction footprint

				Crown				
Ггее			dbh	Radius			Retain /	
Number	Species	Scientific Name	(cm)	(m)	Condition	Comments	Remove	Reason for action taken
314	White Cedar	Thuja occidentalis	12.5	0.5	Poor	clump; crown dieback	retain	outside construction footprint
315	White Cedar	Thuja occidentalis	28	3	Good	multi-stemmed clump	retain	outside construction footprint
816	White Cedar	Thuja occidentalis	28	4	Good	multi-stemmed clump	retain	outside construction footprint
17	European Buckthorn	Rhamnus cathartica	21	4	Good		retain	outside construction footprint
18	White Cedar	Thuja occidentalis	24	2	Poor		retain	outside construction footprint
19	Norway Maple	Acer platanoides	32	4.5	Good		remove	in construction footprint
20	Silver Maple	Acer saccharinum	26	6	Fair	sparse canopy	retain	outside construction footprint
21	Silver Maple	Acer saccharinum	14.5	3.5	Fair	sparse canopy	retain	outside construction footprint
22	Norway Maple	Acer platanoides	32	8	Poor		retain	outside construction footprint
23	Norway Maple	Acer platanoides	29	5	Fair		retain	outside construction footprint
4	Norway Maple	Acer platanoides	29	4.5	Poor		retain	outside construction footprint
25	Norway Maple	Acer platanoides	32	5	Good		retain	outside construction footprint
26	Blue Spruce	Picea pungens	28	3	Good		retain	outside construction footprint
27	Blue Spruce	Picea pungens	26	2	Fair		retain	outside construction footprint
28	Silver Maple	Acer saccharinum	61	11	Fair	some dieback	retain	outside construction footprint
29	Silver Maple	Acer saccharinum	10	3	fair		retain	outside construction footprint
30	Silver Maple	Acer saccharinum	14.5	3.5	Fair		retain	outside construction footprint
31	Norway Maple	Acer platanoides	19	4	Poor		remove	in construction footprint
32	White Elm	Ulmus americana	81	13	Poor	clump; crown dieback (90% dead)	remove	significant root loss
33	Norway Maple	Acer platanoides	26.5	5	Good		remove	in construction footprint
4	Silver Maple	Acer saccharinum	2	4	Good		retain	outside construction footprint
5	Silver Maple	Acer saccharinum	22.5	6	Good		retain	outside construction footprint
5	Silver Maple	Acer saccharinum	26	5	Good		retain	outside construction footprint
7	Norway Maple	Acer platanoides	16.5	5	Poor	significant bark damage	remove	in construction footprint
8	Norway Maple	Acer platanoides	20.5	5	Poor	crown dieback;significant bark damage	remove	in construction footprint
9	Norway Maple	Acer platanoides	31	5	Good		remove	in construction footprint
0	Norway Maple	Acer platanoides	23	4	Fair		remove	in construction footprint
1	Norway Maple	Acer platanoides	33	5	Good		remove	in construction footprint
2	Norway Maple	Acer platanoides	34	6.5	Good		remove	in construction footprint
43	White Cedar	Thuja occidentalis	24.5	1.5	Poor	×	remove	significant root loss
4	White Cedar	Thuja occidentalis	32	2.5	Poor		remove	significant root loss
5	Silver Maple	Acer saccharinum	99	12	Fair	some crown dieback	remove	significant root loss
6	White Cedar	Thuja occidentalis	24.5	2.5	Fair		retain	outside construction footprint
7	Silver Maple	Acer saccharinum	12	3	Good		retain	outside construction footprint
8	White Cedar	Thuja occidentalis	28	3	Poor		retain	outside construction footprint
9	White Cedar	Thuja occidentalis	32	3	Poor		retain	outside construction footprint
50	Red Pine	Pinus resinosa	74	9	Fair		remove	in construction footprint
51	White Cedar	Thuja occidentalis	10	1	Good	multi-stemmed clump	remove	fill and grading in root zone
2	Red Pine	Pinus resinosa	60.5	10	Fair	·	remove	fill and grading in root zone
53	White Spruce	Picea glauca	38	3	Fair	some crown dieback	remove	fill and grading in root zone
54	White Cedar	Thuja occidentalis	28	2.5	Fair		remove	in construction footprint
55	White Cedar	Thuja occidentalis	48	4	Good		remove	fill and grading in root zone
56	White Cedar	Thuja occidentalis	17	1	Good	multi-stemmed clump	remove	in construction footprint
57	White Elm	Ulmus americana	13	3	Good	multi-stemmed clump	retain	outside construction footprint
	White Elm	Ulmus americana	12	1.5	Poor	,	retain	outside construction footprint

				Crown			Retain /	
ree lumber	Species	Scientific Name	арп (ст)	Radius (m)		Comments	Remove	Reason for action taken
	White Elm	Ulmus americana	11	2	Good	Comments	remove	fill and grading in root zone
	White Elm	Ulmus americana	11.5	4	Fair	multi-stemmed clump	retain	outside construction footprint
	Crack Willow	Salix fragilis	168	10	Роог	crown dieback	remove	fill and grading in root zone
	Silver Maple	Acer saccharinum	59	8	Good	crown dieback	retain	outside construction footprint
63	Blue Spruce	Picea pungens	4	3	Good		remove	fill and grading in root zone
	White Elm	Ulmus americana	14	2.5	Good		retain	outside construction footprint
	Silver Maple	Acer saccharinum	67	10	Fair	some crown dieback	retain	outside construction footprint
	White Elm	Ulmus americana	145	5	Good	Some orown dioback		0010100
	Manitoba Maple	Acer negundo	18	4	Good			
	Manitoba Maple	Acer negundo	19	4	Good			
	Manitoba Maple	Acer negundo	40	4	Good			
	Manitoba Maple	Acer negundo	18.5	3	Good			
	Manitoba Maple	Acer negundo	42	6	Good			
	Manitoba Maple	Acer negundo	48	7	Good			
	Crab Apple	Malus baccata	37	3.5	Poor	crown dieback		
	Blue Spruce	Picea pungens	35.5	3	Good			
	Blue Spruce	Picea pungens	36	3	Good			
	White Spruce	Picea glauca	46	5	Good			
77	Manitoba Maple	Acer negundo	23	5	Good	multi-stemmed clump		
	Manitoba Maple	Acer negundo	37	5	Good	•		
79	Manitoba Maple	Acer negundo	40	5	Good			G
80	Manitoba Maple	Acer negundo	46	5	Good			
81	Red Ash	Fraxinus pennsylvanica	10.5	1	Good			
82	Red Ash	Fraxinus pennsylvanica	18	3	Good			
83	Bur Oak	Quercus macrocarpa	11	2	Good			
84	Honey Locust	Gleditsi triacanthos var. inermis	36	7	Good			
	Norway Maple	Acer platanoides	38.5	4	Good			
86	Norway Maple	Acer platanoides	21.5	4	Good			

¥.

From: Sent: To: Subject: Attachments: Arun.Hindupur@guelph.ca December-01-15 10:33 AM Senior, Matt; Chipps, Steve FW: York Road Environmental Design Study Clythe Creek.jpg

From: McKenna, Tara (MNRF) [mailto:Tara.McKenna@ontario.ca]
Sent: December 1, 2015 10:22 AM
To: Arun Hindupur
Cc: Thompson, Melinda (MNRF); Timmerman, Art (MNRF)
Subject: RE: York Road Environmental Design Study

Hi Arun,

The previous figure provided by Art Timmerman was his interpretation of where the weirs appear to be from the aerial imagery. We do not have a shape file associated with that information.

I have attached an additional figure with this email, and the green dots represent locations where fish and/or fish habitat information has been collected in the past. The consultant or yourself can make arrangements with Art (copied on this email) to look at the data in more detail in our office at 1 Stone Road West in Guelph.

Art informed me that the Speed River chapter of Trout Unlimited Canada has also collected a lot of data from the area recently and we recommend that you consult with them to request that information.

Kind regards,

Tara

Tara McKenna, M.Pl.

District Planner Ministry of Natural Resources and Forestry, Guelph District 1 Stone Road West Guelph ON, N1G 4Y2 (P) 519-826-4912 (F) 519-826-4929 email: <u>tara.mckenna@ontario.ca</u>

From: <u>Arun.Hindupur@guelph.ca</u> [mailto:Arun.Hindupur@guelph.ca]
Sent: November-30-15 12:57 PM
To: Thompson, Melinda (MNRF); McKenna, Tara (MNRF)
Cc: <u>steve.chipps@amecfw.com</u>; <u>matt.senior@amecfw.com</u>
Subject: RE: York Road Environmental Design Study

Hi Melinda,

Thanks for the information you had previously sent. In discussions with the GRCA, it appears they have a copy of a 2001 Inspection report from Guelph MNRF on various reaches of the Clythe Creek. Would you happen to provide us with a copy of that report as well?

Also, the attached figure which was previously sent by MNRF appears to show weirs/fish barriers. Would you be able to provide this information in shapefile format?

Thanks, Arun

From: Thompson, Melinda (MNRF) [mailto:Melinda.Thompson@ontario.ca]
Sent: November 25, 2015 1:51 PM
To: Arun Hindupur; McKenna, Tara (MNRF)
Cc: steve.chipps@amecfw.com; matt.senior@amecfw.com
Subject: RE: York Road Environmental Design Study

Please see the attached.

Melinda

MELINDA J. THOMPSON 🛞 🛞 🛞

 MANAGEMENT BIOLOGIST | ONTARIO MINISTRY of NATURAL RESOURCES and FORESTRY | GUELPH DISTRICT OFFICE

 1 Stone Road West, Guelph, Ontario, N1G 4Y2 | 2 519.826.6543 | 1 melinda.thompson@ontario.ca

Learn more about Ontario's Species at Risk

From: <u>Arun.Hindupur@guelph.ca</u> [mailto:Arun.Hindupur@guelph.ca]
Sent: November 25, 2015 1:49 PM
To: McKenna, Tara (MNRF)
Cc: Thompson, Melinda (MNRF); <u>steve.chipps@amecfw.com</u>; <u>matt.senior@amecfw.com</u>
Subject: RE: York Road Environmental Design Study

Thanks Tara. That would be great.

From: McKenna, Tara (MNRF) [mailto:Tara.McKenna@ontario.ca]
Sent: November 25, 2015 1:17 PM
To: Arun Hindupur
Cc: Thompson, Melinda (MNRF)
Subject: RE: York Road Environmental Design Study

Hi Arun,

MNRF staff received a similar information request for this project from Dougan and Associates, and a response was provided to them this morning. If you would like, we can send you a copy of the letter.

Regards,

Tara

Tara McKenna, M.Pl. District Planner Ministry of Natural Resources and Forestry, Guelph District 1 Stone Road West Guelph ON, N1G 4Y2 (P) 519-826-4912 (F) 519-826-4929 email: tara.mckenna@ontario.ca

From: <u>Arun.Hindupur@guelph.ca</u> [mailto:Arun.Hindupur@guelph.ca]
Sent: November-25-15 9:30 AM
To: McKenna, Tara (MNRF)
Cc: <u>steve.chipps@amecfw.com</u>; <u>matt.senior@amecfw.com</u>
Subject: RE: York Road Environmental Design Study

Hi Tara,

In addition to the jpg file you provided, would you happen to have any more information which may be relevant to this study area? Was something along the lines of ecological mapping for the area or perhaps field monitoring, including temperature data collection or electrofishing?

Thanks,

Arun

From: Arun Hindupur
Sent: November 10, 2015 8:49 AM
To: 'McKenna, Tara (MNRF)'
Cc: Chipps, Steve (<u>steve.chipps@amecfw.com</u>); Senior, Matt (<u>matt.senior@amecfw.com</u>)
Subject: RE: York Road Environmental Design Study

Hi Tara,

Thanks for your comments. The project team will take them into consideration and be in touch if there are any additional questions.

Regards,

Arun

Arun Hindupur, M.Sc., P.Eng. | Infrastructure Planning Engineer Engineering Services | Engineering and Capital Infrastructure Services City of Guelph

T 519-822-1260 x 2282 | F 519-822-6194 E <u>arun.hindupur@guelph.ca</u>

guelph.ca

From: McKenna, Tara (MNRF) [mailto:Tara.McKenna@ontario.ca]
Sent: November 9, 2015 4:13 PM
To: Arun Hindupur
Cc: Timmerman, Art (MNRF); Whalen, Rose (MNRF)
Subject: RE: York Road Environmental Design Study

Hi Arun,

MNRF staff have reviewed the York Road Class Environmental Assessment Report and Terms of Reference for the environmental design study. Please find MNRF comments below:

- Where the dam/weir decommissioning or partial decommissioning is being proposed, Lands and Rivers Improvement Act (LRIA) approval may be required. MNRF staff require more detailed information on the proposal to provide specific direction in this regard.
- The relocation or channelization of the creek does not require LRIA approval as this is the jurisdiction of the Grand River Conservation Authority for approvals at this location.
- The following bullet points come directly from the Grand River Fisheries management plan:
 - "The fish community objective for Clythe Creek is a coldwater fish community in areas where geological and biophysical characteristics are present and habitat exists or has been rehabilitated." (Pg. 78)
 - "Management Strategies for Clythe Creek include: work with owners of dams and impoundments to eliminate or reduce the impacts of these features on downstream fish populations and fish habitat, consider modifications to remove existing barriers to fish passage, rehabilitate degraded habitat to restore functional system" (Pg. 78-79)

MNRF staff recommend incorporating these objectives and management strategies into the relocation design for Clythe Creek.

- Based on information in the Terms of Reference, MNRF staff have marked on the attached map the approximate location of the 135m stretch of the Clythe Creek which is recommended to be relocated for the proposed road widening.
 - MNRF staff note that there appears to be 3 weirs within the 135m stretch of creek to be relocated, whereas only 2 weirs are proposed to be removed for the relocation of the creek. MNRF would appreciate clarification on whether or not the 3rd weir is being considered for removal to improve fish passage.
 - Also within this stretch of Clythe Creek is a tributary that enters from the east (see attached map). This tributary discharges cold water to the creek, and MNRF recommends that this tributary be considered in the relocation design for Clythe Creek.
 - Downstream (to the southwest) of this reach all the way to Hadati Creek, Clythe Creek appears to be just as close to the existing York Road as the creek is within the 135m stretch. Will this downstream area be impacted by the proposed widening of York Road? This section contains additional weirs that not only impact fish movement in the creek but they also impound the creek, causing widening which in turn elevates the water temperature of the creek.
 - Within this downstream reach there is a lack of riparian vegetation, and as such, MNRF staff recommend considering opportunities for riparian planting in this area to improve fish habitat.

Should you have any questions or require any clarification on the above comments, please do not hesitate to contact me.

Kind regards,

Tara

Tara McKenna, M.Pl.

District Planner Ministry of Natural Resources and Forestry, Guelph District 1 Stone Road West Guelph ON, N1G 4Y2 (P) 519-826-4912 (F) 519-826-4929

email: tara.mckenna@ontario.ca

From: <u>Arun.Hindupur@guelph.ca</u> [<u>mailto:Arun.Hindupur@guelph.ca</u>] Sent: October-28-15 9:52 AM To: McKenna, Tara (MNRF) Cc: <u>steve.chipps@amecfw.com</u>; <u>matt.senior@amecfw.com</u> Subject: RE: York Road Environmental Design Study

Hi Tara,

The main objective of the current study is to determine a creek design/realignment in order to accommodate the widening of York Rd. from 2 to 4 lanes. We are aware of the weir structures along different reaches of the creek and that they pose a barrier to fish passage. However, these weir features have cultural heritage significance so it's not necessarily as simple as removing them completely. The ultimate creek/channel design as to balance hydrology and hydraulic considerations as well as natural heritage features (groundwater/surface water interactions, fish passage, etc.) and cultural heritage aspects (weirs).

Nothing has been proposed as of yet as we have just started the study. The project team is planning on engaging all affected stakeholders (GRCA, MOECC, Infrastructure Ontario, etc.) including the MNRF at the beginning of the study in order to determine what considerations should be taken into account when considering a new channel design/realignment. Once that information is provided, the project team will evaluate various design alternatives and ask the impacted stakeholders to provide input in order to inform the preferred final design.

Please feel free to contact me if you have any questions.

Thanks, Arun

Arun Hindupur, M.Sc., P.Eng. | Infrastructure Planning Engineer Engineering Services | Engineering and Capital Infrastructure Services City of Guelph

T 519-822-1260 x 2282 | F 519-822-6194 E <u>arun.hindupur@guelph.ca</u>

guelph.ca

From: McKenna, Tara (MNRF) [mailto:Tara.McKenna@ontario.ca] Sent: October 27, 2015 4:26 PM To: Arun Hindupur Subject: RE: York Road Environmental Design Study

Hi Arun,

I have a some areas for clarification based on the information you sent me previously. On page 16 of the EA report, Section 5.7 notes the removal of two weirs which are a barrier to fish passage. Is the proposal still to remove only the 2 weirs? It is MNRF's understanding that there are 10+ weirs along Clythe Creek in this area, and staff would appreciate a better understanding of the number and location of the weirs proposed in the relocation of the creek.

Would you be able to send any preliminary figures, maps, or images of the potential relocation options for Clythe Creek? This would help give MNRF staff a better understanding of the works proposed, and potential impacts to the creek.

How will the flow of the creek be controlled with the removal of the weirs?

Looking forward to your response. Thank you kindly,

Tara

Tara McKenna, M.Pl.

District Planner Ministry of Natural Resources and Forestry, Guelph District 1 Stone Road West Guelph ON, N1G 4Y2 (P) 519-826-4912 (F) 519-826-4929 email: <u>tara.mckenna@ontario.ca</u>

From: <u>Arun.Hindupur@guelph.ca</u> [mailto:Arun.Hindupur@guelph.ca] Sent: October-21-15 1:28 PM To: McKenna, Tara (MNRF) Subject: RE: York Road Environmental Design Study

Hi Tara,

Hope all is well. We will be having a project meeting next Friday morning here at the City with our consultants. If you're available Friday afternoon, perhaps we can come to your office and discuss any of the MNRF's concerns with respect to this study?

Thanks, Arun

From: Arun Hindupur
Sent: October 19, 2015 11:13 AM
To: 'tara.mckenna@ontario.ca'
Cc: Chipps, Steve (<u>steve.chipps@amecfw.com</u>); Senior, Matt (<u>matt.senior@amecfw.com</u>)
Subject: York Road Environmental Design Study

Hi Tara,

Further to our discussion, please see attached original 2007 York Rd. EA. Once, you've had a chance to review, it would be good to have a chat with yourself and our consulting team (cc'd on this email) to discuss any considerations from the MNRs perspective.

Please feel free to contact me if you have any questions.

Thanks, Arun

Arun Hindupur, M.Sc., P.Eng. | Infrastructure Planning Engineer

Engineering Services | Engineering and Capital Infrastructure Services City of Guelph

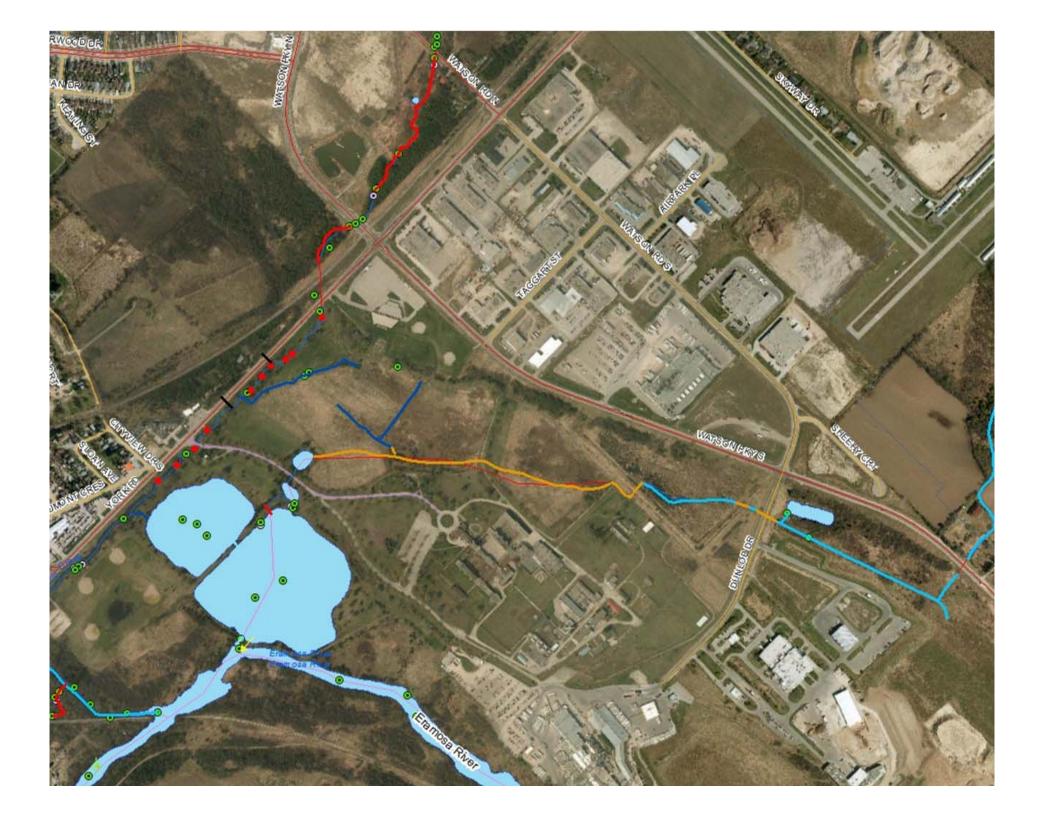
T 519-822-1260 x 2282 | F 519-822-6194 E <u>arun.hindupur@guelph.ca</u>

guelph.ca

This e-mail message (including attachments, if any) is intended for the use of the individual to whom it is addressed and may contain information that is privileged and confidential. If you are not the intended recipient, you are notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in error, please notify the sender and erase this e-mail message immediately.

This e-mail message (including attachments, if any) is intended for the use of the individual to whom it is addressed and may contain information that is privileged and confidential. If you are not the intended recipient, you are notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in error, please notify the sender and erase this e-mail message immediately.

This e-mail message (including attachments, if any) is intended for the use of the individual to whom it is addressed and may contain information that is privileged and confidential. If you are not the intended recipient, you are notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in error, please notify the sender and erase this e-mail message immediately.


This e-mail message (including attachments, if any) is intended for the use of the individual to whom it is addressed and may contain information that is privileged and confidential. If you are not the intended recipient, you are notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in error, please notify the sender and erase this e-mail message immediately.

This e-mail message (including attachments, if any) is intended for the use of the individual to whom it is addressed and may contain information that is privileged and confidential. If you are not the intended recipient, you are notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in error, please notify the sender and erase this e-mail message immediately.

This e-mail message (including attachments, if any) is intended for the use of the individual to whom it is addressed and may contain information that is privileged and confidential. If you are not the intended recipient, you are notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in error, please notify the sender and erase this e-mail message immediately.

Natural Heritage Information Centre (NHIC) Biodiversity Explorer query (NHIC 2015)	City of Guelph Municipal List of Species at Risk (SAR) (City of Guelph 2015)	Wellington Upper Tier SAR List (OMNRF 2013)	Clythe Creek Subwatershed Overview (Ecologistics Ltd. and Blackport and Associates 1998)	Eramosa - Blue Springs Watershed Study Report (Beak International Inc. and Aquafor Beech Ltd., 1999)	Eramosa River - Blue Springs Creek Linear Corridor Initiative (Proctor & Redfern Ltd. et al. 1995)	Guelph Correctional Centre Natural Heritage Assessment (Natural Resources Solutions Inc., 2013)	Scientific Name	Common Name	GRANK	COSEWIC	SARO STATUS	SRANK	City of Guelph	Wellingto n County	Native Status
		Х					Arnoglossum plantagineum	Tuberous Indian-plantain	G4G5	SC	SC	S3			Ν
				Х			Asplenium platyneuron	Ebony Spleenwort	G5			S4	LS	R1	Ν
				Х			Asplenium trichomanes	Maidenhair Spleenwort	G5			S5	LS	R2	Ν
				х			Botrychium simplex	Least Moonwort	GNR			SU	LS	R1/R2	Ν
Н				Х			Carex careyana	Carey's Sedge	G4G5			S2		R1	Ν
				х			Carex pallescens	Pale Sedge	G5			S5	LS		Ν
		Х					Castanea dentata	American Chestnut	G4	E	END	S2		R1	Ν
						Р	Celtis occidentalis	Common Hackberry	G5			S4	LS		Ν
				н			Epilobium strictum	Downy Willowherb	G5?			S5	LS	R1	Ν
				Х			Equisetum pratense	Meadow Horsetail	G5			S5	LS	R1	Ν
						Р	Euonymus atropurpureus	Eastern Burning Bush	G5			S3		R1	Ν
					Х		Gentiana rubricaulis	Closed Gentian	G4?			S4	LS	R1	Ν
	Х	Х		Н		Х	Juglans cinerea	Butternut	G4	E	END	S3?			Ν
					Х		Lobelia kalmii	Kalm's Lobelia	G5			S5	LS		Ν
				Н			Lycopodium clavatum	Running Clubmoss	G5			S5	LS		Ν
		Х					Panax quinquefolius	American Ginseng	G3G4	E	END	S2		R2	Ν
				Х			Pellaea atropurpurea	Purple-stemmed Cliffbrake	G5			S3		R1	Ν
		Х					Potamogeton hillii	Hill's Pondweed	G3	SC	SC	S2		R2	Ν
				Н			Pyrola chlorantha	Green-flowered Pyrola	G5			S4S5	LS	R1	Ν
				Н			Ribes hirtellum	Smooth Gooseberry	G5			S5	LS	R1	Ν
				Х			Solidago arguta	Cut-leaved Goldenrod	G5			S4	LS	R1	Ν
			Х				Vaccinium corymbosum	Highbush Blueberry	G5			S4	LS	R1	Ν

X: Species was recorded in the document.

H: Species was recorded in the document but is considered historic

P: Species was recorded in the document and is known to be planted.

Appendix H-1: Vascular Plant Species List from Available Background Resources.

Parameter	Source	Legend
G Rank	NHIC (Natural Heritage Information Centre). 2011. Ontario Vascular Plant Species List. Biodiversity Explorer Online Database. Ontario Ministry of Natural Resources.	G1 critically imperiled on a global scale; G2 imperiled on a global scale; G3 vulnerable on a global scale; G4 apparently secure on a global scale; G5 secure on a global scale. (http://www.natureserve.org/explorer/ranking.htm)
COSEWIC	NHIC (Natural Heritage Information Centre). 2011. Ontario Vascular Plant Species List. Biodiversity Explorer Online Database. Ontario Ministry of Natural Resources.	NAR Not At Risk, a wildlife species that has been evaluated and found to be not at risk of extinction given the current circumstances; SC Special Concern, a wildlife species that may become threatened or endangered because of a combination of biological characteristics and identified threats; T Threatened, a wildlife species that is likely to become endangered if nothing is done to reverse the factors leading to its extirpation or extinction; E Endangered, a wildlife species facing imminent extirpation or extinction; XT Extirpated, a wildlife species that no longer exists in the wild in Canada, but exists elsewhere; X Extinct, a wildlife species that no longer exists.
SARO Status	NHIC (Natural Heritage Information Centre). 2011. Ontario Vascular Plant Species List. Biodiversity Explorer Online Database. Ontario Ministry of Natural Resources.	NAR Not At Risk; SC Special Concern; THR Threatened; END Endangered; EXP Extirpated; END-R Endangered (Regulated)
S Rank	NHIC (Natural Heritage Information Centre). 2011. Ontario Vascular Plant Species List. Biodiversity Explorer Online Database. Ontario Ministry of Natural Resources.	SX Presumed Extirpated; SH Possibly Extirpated (Historical); S1 Critically Imperiled; S2Imperiled; S3 Vulnerable; S4 Apparently Secure; S5 Secure; SNR Unranked; SU Unrankable (conflicting information about status or trends); SNA Not Applicable (A conservation status rank is not applicable because the species is not a suitable target for conservation activities.); S#S# Range Rank (used to indicate any range of uncertainty about the status of the species or community). S? Not Ranked Yet; or if following a ranking, Rank Uncertain (e.g. S3?).
City of Guelph	City of Guelph. 2012. Locally Significant Species List, Significant Plant List. Official Plan Amendment # 42.	LS Locally Significant in the City of Guelph but not including species with higher level rarity status (COSEWIC, COSSARO, G1-G3, S1-S3)
Wellington County	Frank, R. and A. Anderson. 2009. The Flora of Wellington County. Wellington County Historical Society, Fergus Ontario. 145 pp.	Defined by the number of survey sites where the species was found. R1 1-3 sites; R2 4-6 sites; R3 6-10 sites.
Native Status	NHIC (Natural Heritage Information Centre). 2009. Ontario Vascular Plant Species List. Biodiversity Explorer Online Database. Ontario Ministry of Natural Resources.	N native; l introduced

Appendix I-1 - Species at Risk (SAR) Screening

SPECIES	SAR Designation	Status in City of Guelph (to September 29, 2015)	Key Habitats Used By Species	Status at York Road Environmental Design site and adjacent lands (within 120 metres)
AMPHIBIANS		20, 20, 0)		
Jefferson Salamander (<i>Ambystoma jeffersonianum</i>)	Endangered	Known to Occur	Inhabits deciduous and mixed deciduous forests with suitable breeding areas which generally consist of ephemeral (temporary) bodies of water that are fed by spring runoff, groundwater, or springs.	No suitable habitat present on site or on adjacent lands.
BIRDS				
Bald Eagle (Haliaeetus leucocephalus)	Special Concern	Known to Occur		No suitable breeding habitat present on site or on adjacent lands; may overwinter along stretches of the adjacent Eramosa River. Not detected during 2016 field investigations.
Bank Swallow (<i>Riparia riparia</i>)	Threatened (federal only)	Known to Occur	Low areas along rivers, streams, coasts or reservoirs; nest in natural bluffs and eroding streamside banks, also sand and gravel quarries and road cuts	No suitable habitat present on site or on adjacent lands. Not detected during 2016 breeding bird surveys.
Barn Swallow (Hirundo rustica)	Threatened	Known to Occur	Prefers farmland, lake/river shorelines, wooded clearings, urban populated areas, rocky cliffs, and wetlands. They nest inside or outside buildings; under bridges and in road culverts; on rock faces and in caves, etc.	Present at site foraging over open areas, such as the main ponds, the baseball fields on the west side, and fields at the east side. No nesting structures are present on site although they exist in adjacent areas.
Bobolink (Dolichonyx oryzivorus)	Threatened	Known to Occur	Generally prefers open grasslands and hay fields. In migration and in winter uses freshwater marshes and grasslands.	No suitable habitat present on site or on adjacent lands. Not detected during 2016 breeding bird surveys.
Canada Warbler (Wilsonia canadensis)	Threatened (federal) / Special Concern (provincial)	Suspected to Occur	Generally prefers wet coniferous, deciduous and mixed forest types, with a dense shrub layer. Nests on the ground, on logs or hummocks, and uses dense shrub layer to conceal the nest.	No suitable habitat present on site or on adjacent lands. Not detected during 2016 breeding bird surveys.
Chimney Swift (Chaetura pelagica)	Threatened	Known to Occur	Historically found in deciduous and coniferous, usually wet forest types, all with a well developed, dense shrub layer; now most are found in urban areas in large uncapped chimneys.	Seen foraging over main ponds. Not nesting on-site or in adjacent lands as no suitable chimneys available or large (50+ cm dbh) cavity trees.
Common Nighthawk (Chordeiles minor)	Threatened (federal) / Special Concern (provincial)	Known to Occur	Generally prefers open, vegetation-free habitats, including dunes, beaches, recently harvested forests, burnt-over areas, logged areas, rocky outcrops, rocky barrens, grasslands, pastures, peat bogs, marshes, lakeshores, and river banks. This species also inhabits mixed and coniferous forests. Can also be found in urban areas (nests on flat roof-tops).	No suitable habitat present on site or on adjacent lands.
Eastern Meadowlark (S <i>turnella Magna</i>)	Threatened	Known to Occur	Generally prefers grassy pastures, meadows and hay fields. Nests are always on the ground and usually hidden in or under grass clumps.	One pair present in field at east side of site; see report for details.
Eastern Wood-Pewee (Contopus virens)	Special Concern (federal only)	Known to Occur	Found in deciduous, mixed woods, or pine plantations; also found in mature woodlands, urban shade trees, roadsides, and orchards; usually found in clearings and forest edges.	Suitable habitat present on site and on adjacent lands. Not detected during 2016 breeding bird surveys.
Golden-winged Warbler (Vermivora chrysoptera)	Special Concern	Known to Occur	Generally prefers areas of early successional vegetation, found primarily on field edges, hydro or utility right-of-ways, or recently logged areas.	No suitable habitat present on site or on adjacent lands. Not detected during 2016 breeding bird surveys.
Red-Headed Woodpecker (Melanerpes erythrocephalus)	Threatened (federal) / Special Concern (provincial)	Known to Occur	Generally prefers open oak and beech forests, grasslands, forest edges, orchards, pastures, riparian forests, roadsides, urban parks, golf courses, cemeteries, as well as along beaver ponds and brooks.	No suitable habitat present on site or on adjacent lands. Not detected during 2016 breeding bird surveys.

Wood Thrush (Hylocichla mustelina)	Special Concern (federal only)	Known to Occur	Breeds in mature deciduous and mixed forests, most commonly those with American beech, sweet gum, red maple, black gum, eastern hemlock, flowering dogwood, American hornbeam, oaks, or pines; nests less successfully in fragmented forests and suburban parks with enough large trees for a territory; ideal habitat includes trees over 50 feet tall, a moderate understory of saplings/shrubs, an open floor with moist soil and decaying leaf litter, and water nearby.	No suitable habitat present on site or on adjacent lands. Not detected during 2016 breeding bird surveys.
Yellow-breasted Chat (Icteria virens)	Endangered	Historically Known to Occur	Generally prefers dense thickets around wood edges, riparian areas, and in overgrown clearings.	No suitable habitat present on site or on adjacent lands. Not detected during 2016 breeding bird surveys.
INSECTS				
Monarch (Danaus plexippus)	Special Concern	Known to Occur	Exist primarily wherever milkweed and wildflowers exist, such as abandoned farmland, along roadsides, and other open spaces.	May occur during migration in non-significant numbers; may breed as Common Milkweed is present in some open areas.
Rusty-patched Bumble Bee (Bombus affinis)	Endangered	Known to Occur	Generally inhabits a range of diverse habitats including mixed farmlands, sand dunes, marshes, urban and wooded areas. It usually nests underground in abandoned rodent burrows.	No suitable habitat present on site or on adjacent lands.
West Virginia White (Pieris virginiensis)	Special Concern	Known to Occur	Generally prefer moist, deciduous woodlands; the larvae feed only on the leaves of the two-leaved toothwort (Cardamine diphylla), which is a small, spring-blooming plant of the forest floor.	No suitable habitat present on site or in adjacent lands.
MAMMALS	•	-		
Eastern Small-footed Myotis (<i>Myotis leibii</i>)	Endangered	Known to Occur	Overwintering habitat: caves and mines that remain above 0 degrees Celsuis; Maternal roosts: primarily under loose rocks on exposed rock outcrops, crevices and cliffs, and occasionally in buildings, under bridges and highway overpasses, and under tree bark.	No overwintering habitat on site; no suitable buildings available for roosting are on site although some are present in adjacent areas. Some potential cavity trees available on site although none of these will be negatively impacted by the proposed works.
Little Brown Myotis (<i>Myotis lucifugus</i>)	Endangered	Known to Occur	Overwintering habitat: caves and mines that remain above 0 C; Maternal roosts: Often associated with buildings (attics, barns, etc.). Occasionally found in trees (25-44 cm dbh).	No overwintering habitat on site; no suitable buildings available for roosting are on site although some are present in adjacent areas. Some potential cavity trees available on site although none of these will be negatively impacted by the proposed works.
Northern Myotis (Myotis septentrionalis)	Endangered	Known to Occur	Overwintering habitat: caves and mines that remain above 0 C; Maternal roosts: often associated with cavities of large diameter trees (25-44 cm dbh). Occasionally found in structures (attics, barns, etc.)	No overwintering habitat on site; no suitable buildings available for roosting are on site although some are present in adjacent areas. Some potential cavity trees available on site although none of these will be negatively impacted by the proposed works.
REPTILES				
Blanding's Turtle (Emydonidea blandingii)	Threatened	Known to Occur	Generally occurs in freshwater lakes, permanent or temporary pools, slow-flowing streams, marshes and swamps. Prefers shallow water that is rich in nutrients, organic soil and dense vegetation. Adults are generally found in open or partially vegetated sites, and juveniles prefer areas that contain thick aquatic vegetation including sphagnum, water lilies and algae. They dig their nest in a variety of loose substrates, including sand, organic soil, gravel and cobblestone. Overwintering occurs in permanent pools that average about one metre in depth, or in slow- flowing streams.	No records from area in NHIC and MNRF databases. None were observed during extensive basking turtle surveys undertaken in 2016. Character of main ponds and adjacent Eramosa River generally unsuitable for species.
Eastern Ribbonsnake (Thamnophis sauritus)	Special Concern	Known to Occur	Generally occurs along the edges of shallow ponds, streams, marshes, swamps, or bogs bordered by dense vegetation that provides cover. Abundant exposure to sunlight is also required, and adjacent upland areas may be used for nesting.	Potential habitat occurs on site and in adjacent areas, although upland areas not present. None found during extensive snake surveys undertaken in 2016. Record from April 25, 1990 in NHIC database.
Milksnake (Lampropeltis triangulum)	Special Concern (pre 2016)	Known to Occur	Generally occurs in rural areas, where it is most frequently reported in and around buildings, especially old structures. It is also found in a wide variety of habitats, from prairies, pastures, and hayfields, to rocky hillsides and a wide variety of forest types. They must also be in proximity to water, and suitable locations for basking and egg- laying.	Marginal habitat available on site, although it lacks old buildings for foraging as well as rocky hillsides and extensive uplands. None were detected during extensive snake surveys undertaken in 2016. Record from vicinity in the MNRF database; record from September 28, 1978 in NHIC database. No longer considered a SAR (as of June 15, 2016).

Northern Map Turtle (Graptemys geographica)	Special Concern	Historically Known to Occur	Found in large rivers and lakes with slow-moving currents and soft bottoms	Record from July 1924 in NHIC database is considered historic in nature. MNRF does not list this species in their current database for the City of Guelph (the species is considered locally extirpated).
Snapping Turtle (Chelydra serpentina)	Special Concern	Known to Occur	Generally inhabit shallow waters where they can hide under the soft mud and leaf litter. Nesting sites usually occur on gravely or sandy areas along streams. Snapping Turtles often take advantage of man-made structures for nest sites, including roads (especially gravel shoulders), dams and aggregate pits.	Observed in main pond in 2016, and undoubtedly occurs elsewhere. No suitable nesting sites (i.e., areas of sand and gravel with a southerly aspect in proximity to water). Overwintering habitat occurs in main ponds and potentially along adjacent Eramosa River. Record from vicinity in MNRF database.
Vascular Plants				
Butternut (<i>Juglans cinere</i> a)	Endangered	Known to Occur	Generally grows in rich, moist, and well-drained soils often found along streams. It may also be found on well-drained gravel sites, especially those made up of limestone. It is also found, though seldomly, on dry, rocky and sterile soils. In Ontario, the Butternut generally grows alone or in small groups in deciduous forests as well as in hedgerows.	Potential habitat occurs on site and in adjacent lands; none detected during 2016 field investigations.

						_									Poly	gon l	D							S	
Scientific Name (NHIC 2016)	Common Name (NHIC 2016)	GRANK	SRANK	City of Guelph (2012)	Wellington Status (2004)	Native Status	1	2	3 4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	Stantec (2006)	NRSI (2012)
Acer negundo	Manitoba Maple	G5	S5			N			X	x x		Х	Х		Х	Х			Х					Х	Х
Acer platanoides	Norway Maple	GNR	SNA			1	X	Х	хх	X	Х	Х			Х	Х		Х	Х				Х		Х
Acer saccharinum	Silver Maple	G5	S5			Ν					Х	Х			Х	Х			Х	Х				Х	Х
Acer saccharum	Sugar Maple	G5	S5			Ν	X	Х	X X	(Х								Х	
Acer x freemanii	(Acer rubrum X Acer saccharinum)	GNA	SNA			1			Х							Х						Х			
Achillea millefolium	Common Yarrow	G5	SNA			N			Х		Х	Х				Х		Х	Х	Х		Х	Х	Х	Х
Agrostis gigantea	Redtop	G4G 5	SNA			I					x								х						
Agrostis stolonifera	Creeping Bentgrass	G5	SNA			Ν			Х					Х			Х	Х		Х	Х	Х	Х	,]	<u>ا</u> ا
Alisma triviale	Northern Water-plantain	G5	S5			Ν			Х																<u> </u>
Alliaria petiolata	Garlic Mustard	GNR	SNA			1		Х	Х			Х			Х	Х			Х		Х				Х
Alnus glutinosa	European Alder	GNR	SNA			1			Х												Х				
Amaranthus powellii ssp. powellii	Powell's Amaranth	G5T5	SNA			Ι																		Х	
Ambrosia artemisiifolia	Annual Ragweed	G5	S5		Х	Ν							Х			Х		Х							l
Amelanchier arborea	Downy Serviceberry	G5	S5		Х	Ν				Х															l
Amelanchier sp	Serviceberry Species								X	(Х
Anemone canadensis	Canada Anemone	G5	S5		х	Ν					Х		Х			Х	Х	Х		Х				 	
Angelica atropurpurea	Great Angelica	G5	S5		х	Ν						Х				Х			Х	Х					Х
Apocynum androsaemifolium	Spreading Dogbane	G5	S5		х	Ν																		Х	
Apocynum sp	Dogbane Species																						Х		
Arctium lappa	Greater Burdock	GNR	SNA			Ι			Х																
Arctium minus	Common Burdock	GNR	SNA			I		Х			Х													Х	Х
Asclepias incarnata	Swamp Milkweed	G5	S5		х	Ν							Х					Х				Х		Х	
Asclepias syriaca	Common Milkweed	G5	S5		Х	Ν					Х		Х			Х						Х		Х	Х
Aster sp	Aster Species								Х												Х				
Betula papyrifera	Paper Birch	G5	S5		х	N																		Х	
Bidens connata	Purple-stemmed Beggarticks	G5	S4?										Х												Х
Bidens sp	Beggar's Ticks Species								Х														Х		
Bromus inermis	Awnless Brome	G5T NR	SNA			1			x x	(x	х				x			х	x		x		x	x
Calla palustris	Wild Calla	G5	S5		х	Ν			х												Х			 	ļļ
Capsella bursa-pastoris	Common Shepherd's Purse	GNR	SNA			1																		Х	
Carex bebbii	Bebb's Sedge	G5	S5		Х	Ν			х		Х					Х	Х	Х		Х				T	
Carex blanda	Woodland Sedge	G5?	S5		х	Ν										Х									
Carex comosa	Bristly Sedge	G5	S5		Х	Ν																Х			
Carex crawei	Crawe's Sedge	G5	S4			Ν														Х					

				C	S	7		-								Poly	gon II	D							s	
Scientific Name (NHIC 2016)	Common Name (NHIC 2016)	GRANK	SRANK	City of Guelph (2012)	Wellington Status (2004)	Native Status	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	Stantec (2006)	NRSI (2012)
Carex eburnea	Ebony Sedge	G5	S5		X	N																			х	
Carex flava	Yellow Sedge	G5	S5		Х	Ν			Х	Х		Х					Х									
Carex hystericina	Porcupine Sedge	G5	S5		Х	Ν			Х	Х																
Carex lacustris	Lake-bank Sedge	G5	S5		Х	Ν							Х	Х									Х		Х	
Carex retrorsa	Retrorse Sedge	G5	S5		Х	Ν												Х								
Carex sp	Sedge Species											Х		Х							Х					Х
Carex spicata	Spiked Sedge	GNR	SNA			1											Х									
Carex stipata	Awl-fruited Sedge	G5	S5		Х	Ν			Х								Х									
Carex stricta	Tussock Sedge	G5	S5		Х	Ν			Х					Х								Х				
Carex sychnocephala	Many-headed Sedge	G4	S4	LS		Ν												Х								
Carex utriculata	Bladder Sedge	G5	S5		Х	Ν												Х								
Carex vulpinoidea	Fox Sedge	G5	S5		х	Ν			Х	Х							Х	Х	Х				Х			
Cerastium sp	Chickweed Species									Х							Х									
Chelidonium majus	Greater Celadine	GNR	SNA			1						Х														
Chelone glabra	White Turtlehead	G5	S5		Х	Ν			Х				Х				Х			Х					Х	Х
Chenopodium album	White Goosefoot	G5	SNA			1													Х						Х	
Cichorium intybus	Chicory	GNR	SNA			1			Х														Х		Х	
Cicuta bulbifera	Bulb-bearing Water-hemlock	G5	S5		Х	Ν			Х					Х								Х				
Cicuta maculata var. maculata	Spotted Water-hemlock	G5T5	S5		Х	Ν			Х													Х				
Circaea canadensis	Broad-leaved Enchanter's Nightshade	G5T5	S5		Х	Ν					Х		Х													
Cirsium arvense	Canada Thistle	GNR	SNA			1			Х	Х		Х					Х				Х	Х	Х		Х	Х
Cirsium vulgare	Bull Thistle	GNR	SNA			1						Х											Х		Х	Х
Clematis virginiana	Virginia Virgin's-bower	G5	S5		Х	Ν						Х		Х							Х				Х	
Convolvulus arvensis	Field Bindweed	GNR	SNA			1				Х																
Cornus alternifolia	Alternate-leaved Dogwood	G5	S5		Х	Ν																		Х		
Cornus amomum	Silky Dogwood	G5	S5		Х	Ν																		Х		
Cornus stolonifera	Red-osier Dogwood	G5	S5			N			Х	Х		Х	Х	Х	Х	Х	Х		Х	Х		Х	Х	Х	Х	Х
Crataegus punctata	Dotted Hawthorn	G5	S5		Х	Ν					Х															
Cynanchum sp	Swallow-wort Species																Х									
Cyperus sp	Umbrella Sedge Species											Х														
Dactylis glomerata	Orchard Grass	GNR	SNA			1	Х	Х	Х	Х		Х	Х									Х			Х	Х
Daucus carota	Wild Carrot	GNR	SNA			1		Х	Х			Х					Х					Х	Х	Х	Х	Х
Dipsacus fullonum	Fuller's Teasel	GNR	SNA			1				1															Х	
Dryopteris marginalis	Marginal Wood Fern	G5	S5		Х	Ν																			Х	
Echinochloa crus-galli	Large Barnyard Grass	GNR	SNA			1																			Х	
Echinocystis lobata	Wild Mock-cucumber	G5	S5		Х	N				1		Х	Х	Х		Х	х			Х	Х				Х	Х

				0	S	7									Р	olygo	on ID	1							Š	
Scientific Name (NHIC 2016)	Common Name (NHIC 2016)	GRANK	SRANK	City of Guelph (2012)	Wellington Status (2004)	Native Status	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	Stantec (2006)	NRSI (2012)
Echium plantagineum	Viperine	GNR	SNA			1						Х														х
Echium vulgare	Common Viper's-bugloss	GNR	SNA			I						Х													Х	
Eleocharis sp	Spikerush Species								Х	Х							Х	Х								
Elymus virginicus var. virginicus	Virginia Wildrye	G5T5	S5		Х	N								Х											Х	
Epilobium hirsutum	Hairy Willowherb	GNR	SNA			1			Х																	
Epilobium parviflorum	Small-flowered Willowherb	GNR	SNA			1												Х	Х				Х	Х		
Epilobium sp	Willow-herb Species								Х													Х				
Equisetum arvense	Field Horsetail	G5	S5		Х	N			Х			Х					Х					Х		Х		
Equisetum variegatum	Variegated Horsetail	G5	S5	LS		N													Х							
Erigeron annuus	Annual Fleabane	G5	S5		Х	N			Х			Х														
Erigeron canadensis	Canada Horseweed	G5	S5		Х	N																			Х	
Erigeron philadelphicus	Philadelphia Fleabane	G5	S5		Х	N			Х								Х									
Erucastrum gallicum	Common Dogmustard	G5	SNA			1																			Х	
Erysimum cheiranthoides	Wormseed Wallflower	G5	SNA			1															Х				Х	
Euonymus europaeus	European Euonymus	GNR	SNA			1																			Х	
Eupatorium perfoliatum	Common Boneset	G5	S5		Х	N			Х										Х	Х			Х			
Euphorbia sp	Spurge Species																				Х					
Euthamia graminifolia	Grass-leaved Goldenrod	G5	S5		Х	N													Х					Х		
Eutrochium maculatum var. maculatum	Spotted Joe Pye Weed	G5T5	S5		Х	1			Х				Х	Х			Х		Х	Х	Х				Х	Х
Fallopia convolvulus	Black Bindweed	GNR	SNA			I								Х												
Fallopia japonica	Japanese Knotweed	GNR	SNA			1								х												
Festuca rubra ssp. rubra	Red Fescue	G5T5	SNA			I													Х							
Fragaria sp	Strawberry Species								Х													Х				
Fragaria vesca	Woodland Strawberry	G5	S5		х	Ν															Х					Х
Fragaria virginiana	Wild Strawberry	G5	S5		Х	Ν	Х		Х	Х		Х					Х						Х		Х	
Frangula alnus	Glossy Buckthorn	GNR	SNA			1			Х	Х		Х	Х	Х		Х	Х		Х	Х			Х		Х	Х
Fraxinus americana	White Ash	G5	S4		х	Ν						Х													Х	
Fraxinus pennsylvanica	Green Ash	G5	S4		Х	Ν																	Х	Х	Х	
Galium asprellum	Rough Bedstraw	G5	S5		Х	N								Х												
Galium mollugo	Smooth Bedstraw	GNR	SNA			1			Х													Х				
Galium palustre	Marsh Bedstraw	G5	S5		Х	Ν			Х	Х							Х		Х		Х					Х
Galium sp	Bedstraw Species								Х												Х					
Geum aleppicum	Yellow Avens	G5	S5		Х	N			Х				Х				Х			Х	Х	Х				Х
Geum canadense	White Avens	G5	S5		Х	Ν											Х									
Geum laciniatum	Rough Avens	G5	S4	LS	SR	Ν			Х								Х									
Geum sp	Avens Species										Х	Х	Х	Х	T		Х			Х					Х	Х

				0	S	7										Poly	gon IE)							Ś	
Scientific Name (NHIC 2016)	Common Name (NHIC 2016)	GRANK	SRANK	City of Guelph (2012)	Wellington Status (2004)	Native Status	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	Stantec (2006)	NRSI (2012)
Glechoma hederacea	Ground Ivy	GNR	SNA			1			х													Х	Х			
Glyceria grandis	Tall Mannagrass	G5	S4S5		х	Ν			Х																	
Glyceria striata	Fowl Mannagrass	G5	S5		Х	Ν			Х										Х							
Hemerocallis fulva	Orange Daylily	GNA	SNA			I						х														
Heracleum maximum	Cow-parsnip	G5	S5		Х	Ν						Х														
Hesperis matronalis	Dame's Rocket	G4G 5	SNA			I							Х													
Hypericum perforatum	Common St. John's-wort	GNR	SNA			I	Х					х											х			
Impatiens capensis	Spotted Jewelweed	G5	S5		Х	Ν			Х	Х							Х				Х		Х	Х		
Impatiens sp	Jewel-weed Species															Х										Х
Inula helenium	Elecampane	GNR	SNA			Ι											Х									
Iris versicolor	Harlequin Blue Flag	G5	S5		Х	Ν			Х														Х			
Jacobaea vulgaris	Tansy Ragwort	GNR	SNA			1																	Х			
Juglans nigra	Black Walnut	G5	S4		Х	N			Х																	
Juncus articulatus	Jointed Rush	G5	S5		Х	Ν													Х							
Juncus dudleyi	Dudley's Rush	G5	S5		Х	Ν			Х								Х						Х			
Juncus effusus	Soft Rush	G5	S5			Ν			Х														Х			
Juncus tenuis	Path Rush	G5	S5		Х	N																	Х		Х	
Juniperus communis	Ground Juniper	G5	S5			N				Х																
Juniperus virginiana	Eastern Red Cedar	G5	S5		Х	N		Х																	Х	
Larix laricina	American Larch	G5	S5		Х	N																			Х	
Leonurus cardiaca	Common Motherwort	GNR	SNA			1		Х				Х		Х											Х	Х
Lepidium densiflorum	Dense-flowered Peppergrass	G5	SNA			1																			Х	
Leucanthemum vulgare	Oxeye Daisy	GNR	SNA			1			Х														Х			
Ligustrum vulgare	European Privet	GNR	SNA			1							Х				Х			Х						Х
Linaria vulgaris	Butter-and-eggs	GNR	SNA			1													Х		Х				Х	
Liriodendron tulipifera	Tulip Tree	G5	S4			N				Х																
Lonicera tatarica	Tartarian Honeysuckle	GNR	SNA			1		Х	Х		Х		Х	Х			Х			Х		Х		Х	Х	Х
Lotus corniculatus	Garden Bird's-foot Trefoil	GNR	SNA			1			Х								Х								Х	
Lycopodium sp	Clubmoss Species																Х			Х	Х					Х
Lycopus americanus	American Water-horehound	G5	S5		Х	N																			Х	
Lycopus uniflorus	Northern Water-horehound	G5	S5		Х	N			Х					Х												
Lysimachia thyrsiflora	Water Loosestrife	G5	S5		Х	N							Х													
Lythrum salicaria	Purple Loosestrife	G5	SNA			1			Х					Х			Х		Х				Х			
Malus sp	Apple Species								Х													Х				
Matteuccia struthiopteris	Ostrich Fern	G5	S5		Х	N							Х			Х	Х			Х					Х	Х

				0	6	7										Polygo	ו ID								Ś	
Scientific Name (NHIC 2016)	Common Name (NHIC 2016)	GRANK	SRANK	City of Guelph (2012)	Wellington Status (2004)	Native Status	1	2	3	4	5	6	7	8	9	10 1	.1	12	13	14	15	16	17	18	Stantec (2006)	NRSI (2012)
Medicago lupulina	Black Medic	GNR	SNA			1	Х		х			х					x									
Medicago sativa	Alfalfa	GNR	SNA			1			Х																	
Melilotus albus	White Sweet-clover	G5	SNA			I						Х														
Melilotus sp	Sweet Clover Species																								х	
Mentha arvensis	Field Mint	G5	S5			Ν			Х								х	Х	Х				Х	Х		
Mentha spicata	Spearmint	GNR	SNA			I												Х								
Mentha x piperita	(Mentha aquatica X Mentha spicata)	GNA	SNA			I			Х	Х								Х					Х	Х		
Muhlenbergia frondosa	Wirestem Muhly	G5	S4		х	Ν								Х							Х					
Myosotis scorpioides	True Forget-me-not	G5	SNA			Ι			Х									Х								
Myosotis sp	Forget-me-not Species									Х													Х	Х		
Myriophyllum spicatum	Eurasian Water-milfoil	GNR	SNA			I																	Х	Х		
Nasturtium microphyllum	Small-leaved Watercress	GNR	SNA			1																			Х	
Nasturtium officinale	Watercress	GNR	SNA			1			Х			Х										Х				Х
Nepeta cataria	Catnip	GNR	SNA			1																			Х	
Nuphar sp	Pond-lily Species																						Х			
Nymphaea odorata ssp. odorata	Fragrant Water-lily	G5T5	S5?		х	Ν											х									
Oenothera biennis	Common Evening Primrose	G5	S5		х	Ν		Х	Х	Х		Х	Х	Х			х			Х	Х	Х	Х	Х	Х	Х
Onoclea sensibilis	Sensitive Fern	G5	S5		х	Ν			Х																	
Origanum vulgare	Wild Marjoram	GNR	SNA			I																	Х			
Ostrya virginiana	Eastern Hop-hornbeam	G5	S5		х	Ν																			Х	
Oxalis sp	Wood Sorrel Species																							Х		
Panicum capillare	Common Panicgrass	G5	S5		Х	Ν																			Х	
Parthenocissus inserta	Thicket Creeper	G5	S5		Х	Ν			Х																	
Persicaria lapathifolia	Pale Smartweed	G5	S5		х	N								Х				Х								
		G3G																								
Persicaria maculosa	Spotted Lady's-thumb	5	SNA			I												Х								
Phalaris arundinacea	Reed Canary Grass	G5	S5		Х	Ν			Х			Х		Х			X		Х	Х	Х	Х		Х	Х	Х
Phleum pratense	Common Timothy	GNR	SNA			I						Х														
Phragmites australis ssp. australis	European Reed	G5T5	SNA			I													Х		Х					Х
Picea abies	Norway Spruce	G5	SNA			I			Х	Х		Х	Х				X			Х			Х		Х	Х
Picea glauca	White Spruce	G5	S5		Х	Ν			Х	Х	Х	Х	Х				x			х					Х	Х
Picea pungens	Blue Spruce	G5	SNA			1			Х			Х	Х				x			х			Х	Х		Х
Pinus banksiana	Jack Pine	G5	S5			Ν																			Х	ļ'
Pinus nigra	Black Pine	GNR	SNA			1			Х		Х		Х				x			Х						Х
Pinus resinosa	Red Pine	G5	S5		Х	Ν				Х			Х			X	x			Х					Х	Х
Pinus strobus	Eastern White Pine	G5	S5		х	Ν			Х	Х															Х	Х

				0		_									P	olyg	on ID)							s	
Scientific Name (NHIC 2016)	Common Name (NHIC 2016)	GRANK	SRANK	City of Guelph (2012)	Wellington Status (2004)	Native Status	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	Stantec (2006)	NRSI (2012)
Pinus sylvestris	Scotch Pine	GNR	SNA			1			х	х	х														х	х
Plantago lanceolata	English Plantain	G5	SNA			I	Х	Х		Х							Х						Х	Х	Х	
Plantago major	Common Plantain	G5	S5			Ν				Х		х							Х						Х	Х
Poa pratensis ssp. pratensis	Kentucky Bluegrass	G5T5	S5			N			Х	Х							Х		Х			Х				
Poa sp	Bluegrass Species													Х							Х					Х
Polygonatum pubescens	Hairy Solomon's Seal	G5	S5		R	N								Х					Х							
Polygonatum sp	Solomon's Seal Species											Х														
Polygonum sp	Smartweed Species																Х									
Populus balsamifera	Balsam Poplar	G5	S5		х	N													Х							
Populus grandidentata	Large-tooth Aspen	G5	S5		Х	N																			Х	
Populus tremuloides	Trembling Aspen	G5	S5		Х	N																			Х	
Potamogeton crispus	Curly-leaved Pondweed	G5	SNA			1																		Х		
Potentilla anserina ssp. anserina	Common Silverweed	GNR	S5			N				Х													Х			
Potentilla norvegica	Norwegian Cinquefoil	G5	S5			N													Х							
Potentilla recta	Sulphur Cinquefoil	GNR	SNA			1																			Х	
Prunus serotina	Wild Black Cherry	G5	S5		Х	N				Х	Х															Х
Prunus virginiana	Choke Cherry	G5	S5		Х	N			Х		Х	Х	Х				Х			Х	Х	Х	Х	Х		Х
Quercus macrocarpa	Bur Oak	G5	S5		Х	N																			Х	
Ranunculus acris	Tall Buttercup	G5	SNA			1				Х																
Ranunculus recurvatus	Hooked Buttercup	G5	S5			N															Х					Х
Ranunculus repens	Creeping Buttercup	GNR	SNA			1							Х				Х			Х						Х
Ranunculus sp	Buttercup Species													Х												
Rhamnus cathartica	Common Buckthorn	GNR	SNA			1		Х	Х	Х	Х	Х	Х	Х		Х	Х		Х	Х		Х	Х	Х	Х	Х
Rhus typhina	Staghorn Sumac	G5	S5			N						х													Х	
Ribes americanum	Wild Black Currant	G5	S5		Х	N							Х													
Ribes sp	Currant Species													Х												
Robinia pseudoacacia	Black Locust	G5	SNA			1							Х				Х			Х					Х	Х
Rosa rugosa	Rugosa Rose	GNR	SNA			1				Х																
Rubus idaeus ssp. idaeus	Common Red Raspberry	G5T5	SNA			1					Х	Х	Х	Х			Х			Х	Х					Х
Rubus occidentalis	Black Raspberry	G5	S5		Х	N			Х					Х								Х				
		G5T4																								
Rudbeckia hirta var. hirta	Black-eyed Susan	T5	SU					Х																		
Rumex crispus	Curly Dock	GNR	SNA			I		Х	Х														Х			
Sagittaria latifolia	Broad-leaved Arrowhead	G5	S5		Х	Ν			Х								Х						Х			
Salix alba	White Willow	G5	SNA			1														Х				Х		
Salix amygdaloides	Peach-leaved Willow	G5	S5		х	Ν													Х							

						_									Pol	ygon l	D							s	
Scientific Name (NHIC 2016)	Common Name (NHIC 2016)	GRANK	SRANK	City of Guelph (2012)	Wellington Status (2004)	Native Status	1	2	3	4	5	6	7 8	9	10) 11	12	13	14	15	16	17	18	Stantec (2006)	NRSI (2012)
Salix discolor	Pussy Willow	G5	S5		Х	N							X												
Salix eriocephala	Heart-leaved Willow	G5	S5		Х	Ν			Х				Х								Х				
Salix humilis	Prairie Willow	G5	S5		Х	Ν							Х												
Salix interior	Sandbar Willow	GNR	S5		Х	Ν			Х																
Salix petiolaris	Meadow Willow	G5	S5		Х	N							Х												
Salix purpurea	Basket Willow	G5	SNA			1																		Х	
Salix sp	Willow Species														Х										
Salix x fragilis	(Salix alba X Salix euxina)	GNR	SNA			1			Х			X)	< X		Х	Х		Х	Х					Х	Х
Sambucus canadensis	Common Elderberry	G5T5	S5		Х	Ν							Х												Х
Schedonorus arundinaceus	Tall Fescue	GNR	SNA			1			Х																
Schoenoplectus tabernaemontani	Soft-stemmed Bulrush	G5	S5		Х	N																Х			
Scirpus atrovirens	Dark-green Bulrush	G5?	S5		Х	N			Х			Х	Х			Х		Х	Х			Х			
Scirpus sp	Bulrush Species															Х									
Scutellaria galericulata	Hooded Skullcap	G5	S5		Х	N												Х							
Senecio vulgaris	Common Ragwort	GNR	SNA			1																		Х	
Setaria pumila	Yellow Foxtail	GNR	SNA			1																		Х	
Silene latifolia	White Campion	GNR	SNA			1				Х													Х		
Silene vulgaris	Maiden's Tears	GNR	SNA			1																		Х	
Solanum dulcamara	Climbing Nightshade	GNR	SNA			1			Х																
Solidago altissima ssp. altissima	Eastern Late Goldenrod	GNR	S5			N		Х	Х			X)	< X	X		Х			Х	Х	Х		Х	Х	Х
Solidago canadensis var. canadensis	Canada Goldenrod	G5T5	S5		Х	N						X)	<						Х	Х		Х	Х		Х
Solidago flexicaulis	Zigzag Goldenrod	G5	S5		Х	N																		Х	
Solidago gigantea	Smooth Goldenrod	G5	S5		Х	N												Х							
Solidago nemoralis ssp. nemoralis	Gray-stemmed Goldenrod	G5T5	S5		Х	N																		Х	
Solidago rugosa var. rugosa	Northern Rough-leaved Goldenrod	G5T5	S5		Х	N												Х							
Solidago sp	Goldenrod Species								Х	Х	Х)	<		Х	Х			Х				Х		Х
Sonchus arvensis ssp. arvensis	Field Sow-thistle	GNR TNR	SNA			I						x				x						х	х		
Sorbus aucuparia	European Mountain-ash	G5	SNA			1					Х														
		G4G																							
Sorbus decora	Northern Mountain-ash	5	S5		х	Ν				Х															
Sorbus sp	Mountain-ash Species																						Х		
Stellaria graminea	Grass-leaved Starwort	GNR	SNA			1										Х									
Stellaria media	Common Chickweed	GNR	SNA			1																		Х	
Symphoricarpos albus var. albus	Common Snowberry	G5T5	S5		х	Ν				Х															
Symphyotrichum ericoides var. ericoides	White Heath Aster	G5T5	S5			Ν														Х					Х

				0		_									F	Polyg	on ID)							S	
Scientific Name (NHIC 2016)	Common Name (NHIC 2016)	GRANK	SRANK	City of Guelph (2012)	Wellington Status (2004)	Native Status	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	Stantec (2006)	NRSI (2012)
Symphyotrichum lanceolatum ssp. lanceolatum	Panicled Aster	G5T5	S5			N	1		х						х	Х		Х	Х	Х	Х		Х	Х		Х
Symphyotrichum lateriflorum	Starved Aster	G5	S5			Ν														Х	Х					Х
Symphyotrichum novae-angliae	New England Aster	G5	S5		Х	Ν				Х		Х	Х				Х			Х	Х					Х
Symphyotrichum puniceum	Swamp Aster	G5	S5		Х	Ν			Х					Х				Х	Х							
Symphytum officinale	Common Comfrey	GNR	SNA			1			Х													Х				
Syringa vulgaris	Common Lilac	GNR	SNA			1				Х	Х													Х	Х	Х
Tanacetum vulgare	Common Tansy	GNR	SNA			1																			Х	
Taraxacum ceratophorum	Horned Dandelion	G5T5	S5			N			Х																	
Taraxacum officinale	Common Dandelion	G5	SNA			1	Х	Х	Х		Х	Х										Х			Х	
Thalictrum dioicum	Early Meadow-rue	G5	S5		Х	N			Х													Х				
Thalictrum pubescens	Tall Meadow-rue	G5	S5		Х	N			Х											Х	Х					
Thalictrum sp	Meadowrue Species											х	Х													
Thlaspi arvense	Field Penny-cress	GNR	SNA			1																			Х	
Thuja occidentalis	Eastern White Cedar	G5	S5		Х	N		Х	Х	Х	Х	х	Х	Х		Х	Х			Х			Х	Х	Х	Х
Tilia americana	American Basswood	G5	S5		Х	N																			Х	
Toxicodendron radicans	Climbing Poison Ivy	G5	S5			N											Х									
Tragopogon pratensis	Meadow Goat's-beard	GNR	SNA			1			Х																Х	
Trifolium pratense	Red Clover	GNR	SNA			1																			Х	
Tussilago farfara	Colt's-foot	GNR	SNA			I			Х													Х		Х		
Typha angustifolia	Narrow-leaved Cattail	G5	SNA		Х	I						х		Х								Х		Х	Х	Х
Typha latifolia	Broad-leaved Cattail	G5	S5		Х	N			Х					Х			Х		Х	Х						Х
Typha x glauca	(Typha angustifolia X Typha latifolia)	GNA	SNA		Х	1			Х																	
Ulmus americana	American Elm	G5?	S5		Х	N			Х		Х	Х					Х								Х	
Ulmus pumila	Siberian Elm	GNR	SNA			I																		Х		
Ulmus thomasii	Rock Elm	G5	S4?		Х	N																			Х	
		G5T5																								
Urtica dioica ssp. dioica	European Stinging Nettle	?	SNA			I				Х		Х	Х	Х		Х	Х		Х	Х	Х					Х
Urtica dioica ssp. gracilis	Slender Stinging Nettle	G5T5	S5		х	Ν				Х											Х					Х
Verbascum thapsus	Common Mullein	GNR	SNA			1			Х			х	Х				Х			Х		Х			Х	Х
Verbena hastata	Blue Vervain	G5	S5		х	Ν						х	Х	Х			Х			Х	Х		Х		Х	Х
Verbena urticifolia	White Vervain	G5	S5		Х	Ν							Х					Х							Х	
Veronica officinalis	Common Speedwell	G5	SNA			1																			Х	
Viburnum lantana	Wayfaring-tree	GNR	SNA			I					Х	Х												Х		
Viburnum lentago	Nannyberry	G5	S5		Х	Ν					Х			Х											Х	
Viburnum opulus ssp. opulus	Cranberry Viburnum	GNR	SNA			I											Х									
Viburnum opulus ssp. trilobum	Highbush Cranberry	GNR	S5		Х	Ν																			Х	

				0	6	7									Poly	gon I[)							Si	
Scientific Name (NHIC 2016)	Common Name (NHIC 2016)	GRANK	SRANK	City of Guelph (2012)	Wellington Status (2004)	Native Status	1	2	3	4	5	6	7 8	9	10	11	12	13	14	15	16	17	18	tantec (2006)	NRSI (2012)
Vicia cracca	Tufted Vetch	GNR	SNA			1						Х						Х	х	Х		х		Х	
		G4G																							
Viola cucullata	Marsh Blue Violet	5	S5		Х	Ν						Х													
Viola sp	Violet Species												Х					Х							
Vitis riparia	Riverbank Grape	G5	S5		Х	Ν			Х				l l		Х					Х		Х		Х	Х
Zanthoxylum americanum	Northern Prickley Ash	G5	S5		Х	Ν																		Х	

Global Conservation Status (GRank)

Global Conservation Status: NatureServe Explorer provides conservation status, taxonomy, distribution, and life history information for more than 70,000 plants, animals, and ecological communities and systems in the United States and Canada Natureserve (2014).

Global conservation status assessments (G-Ranks) generally are carried out by NatureServe scientists (including biologists in state and provincial member programs), with input from other experts. These assessments are widely used throughout the conservation community and are regarded as highly credible by scientists, government agencies and private-sector organizations. Status assessments are based on the best available information and consider a variety of factors such as species abundance, distribution, population trends and threats. (Documentation of the methods for developing these assessments is available at www.natureserve.org/explorer/ranking.htm).

- G1 Critically Imperiled—At very high risk of extinction due to extreme rarity (often 5 or fewer populations), very steep declines, or other factors
- G2 Imperiled—At high risk of extinction due to very restricted range, very few populations (often 20 or fewer), steep declines, or other factors.
- G3 Vulnerable—At moderate risk of extinction due to a restricted range, relatively few populations (often 80 or fewer), recent and widespread declines, or other factors.
- G4 Apparently Secure—Uncommon but not rare; some cause for long-term concern due to declines or other factors.
- Secure-Common; widespread and abundant. G5
- G#G# Range Rank—A numeric range rank (e.g., G2G3) is used to indicate the range of uncertainty in the status of a species or community. Ranges cannot skip more than one rank (e.g., GU should be used rather than G1G4).
- GU Unrankable—Currently unrankable due to lack of information or due to substantially conflicting information about status or trends. Whenever possible, the most likely rank is assigned and the question mark qualifier is added (e.g., G2?) to express uncertainty, or a range rank (e.g., G2G3) is used to delineate the limits (range) of uncertainty.
- GNR Unranked—Global rank not yet assessed.
- GNA Not Applicable—A conservation status rank is not applicable because the species is not a suitable target for conservation activities.
- ? Inexact Numeric Rank—Denotes inexact numeric rank (e.g., G2?)
- Q Questionable taxonomy—Taxonomic distinctiveness of this entity at the current level is questionable; resolution of this uncertainty may result in change from a species to a subspecies or hybrid, or the inclusion of this taxon in another taxon, with the resulting taxon having a lower-priority conservation priority.
- С Captive or Cultivated Only—At present extant only in captivity or cultivation, or as a reintroduced population not yet established.
- T# Infraspecific Taxon (trinomial)—The status of infraspecific taxa (subspecies or varieties) are indicated by a "T-rank" following the species' global rank. Rules for assigning T-ranks follow the same principles outlined above for global conservation status ranks. For

example, the global rank of a critically imperiled subspecies of an otherwise widespread and common species would be G5T1. A Trank cannot imply the subspecies or variety is more abundant than the species as a whole-for example, a G1T2 cannot occur. A vertebrate animal population, such as those listed as distinct population segments under under the U.S. Endangered Species Act, may be considered an infraspecific taxon and assigned a T-rank; in such cases a Q is used after the T-rank to denote the taxon's informal taxonomic status.

HYB Hybrid – Applied by Dougan & Associates to individuals of hybrid origin.

Provincial rarity ranks (i.e. Subnational or "SRanks") are evaluated & assigned by the (Ontario) Natural Heritage Information Centre (NHIC, 2014)

Provincial (or Subnational) ranks are used by the Natural Heritage Information Centre to set protection priorities for rare species and natural communities. These ranks are not legal designations. Provincial ranks are assigned in a manner similar to that described for global ranks, but consider only those factors within the political boundaries of Ontario. By comparing the global and provincial ranks, the status, rarity, and the urgency of conservation needs can be ascertained. The NHIC evaluates provincial ranks on a continual basis and produces updated lists at least annually

- SX intensive searches of historical sites and other appropriate habitat, and virtually no likelihood that it will be rediscovered.
- SH
- **S1** because of some factor(s) such as very steep declines making it especially vulnerable to extirbation from the state/province.
- S2 fewer), steep declines, or other factors making it very vulnerable to extirpation from the nation or state/province.
- **S**3 and widespread declines, or other factors making it vulnerable to extirpation.
- Apparently Secure—Uncommon but not rare; some cause for long-term concern due to declines or other factors. S4
- S5 Secure—Common, widespread, and abundant in the nation or state/province.
- SNR Unranked—Nation or state/province conservation status not yet assessed.
- Unrankable—Currently unrankable due to lack of information or due to substantially conflicting information about status or trends. SU
- SNA Not Applicable A conservation status rank is not applicable because the species is not a suitable target for conservation activities.
- S#S# Range Rank A numeric range rank (e.g., S2S3) is used to indicate any range of uncertainty about the status of the species or community. Ranges cannot skip more than one rank (e.g., SU is used rather than S1S4).

Presumed Extirpated—Species or community is believed to be extirpated from the nation or state/province. Not located despite

Possibly Extirpated (Histor.ical)-Species or community occurred historically in the nation or state/province, and there is some possibility that it may be rediscovered. Its presence may not have been verified in the past 20-40 years. A species or community could become NH or SH without such a 20-40 year delay if the only known occurrences in a nation or state/province were destroyed or if it had been extensively and unsuccessfully looked for. The NH or SH rank is reserved for species or communities for which some effort has been made to relocate occurrences, rather than simply using this status for all elements not known from verified extant occurrences.

Critically Imperiled—Critically imperiled in the nation or state/province because of extreme rarity (often 5 or fewer occurrences) or

Imperiled—Imperiled in the nation or state/province because of rarity due to very restricted range, very few populations (often 20 or

Vulnerable—Vulnerable in the nation or state/province due to a restricted range, relatively few populations (often 80 or fewer), recent

Appendix H-2 - Vascular Plant Species List

Regional Conservation Status

Native Status (Newmaster et al. 1998; Oldham et al. 1995)

"N" = Plant is considered native to this region.

"I" = Plant has been introduced from another region.

Local Conservation Status

City of Guelph (2012)

R-A Included based on "rare" status (i.e., occurrence at between 1 and 10 natural sites in the County) in the Flora of Wellington County:

REFERENCES

Bakowsky, W. D. 1996. Natural Heritage Resources of Ontario: Vegetation communities of southern Ontario. Natural Heritage Information Centre, Ontario Ministry of Natural Resources, Peterborough, Ontario. 21 pp.

City of Guelph. 2012. Locally Significant Species List, Significant Plant List. Official Plan Amendment # 42.

COSEWIC (Committee on the Status of Endangered Wildlife in Canada). 2013. Canadian Wildlife Species at Risk. Committee on the Status of Endangered Wildlife in Canada. May 2013. Available at: http://www.cosewic.gc.ca/eng/sct0/rpt/rpt_csar_e.cfm [accessed] July 25, 2014].

COSEWIC (Committee on the Status of Endangered Wildlife in Canada). 2014. COSEWIC Wildlife Species Assessments (detailed version), May 2014. Available at: http://www.cosewic.gc.ca/rpts/detailed species assessments e.pdf

Frank, R. and A. Anderson. 2009. The Flora of Wellington County. Wellington County Historical Society, Fergus Ontario. 145 pp.

Natureserve. 2014. Natureserve Explorer Global Conservation Status Definitions. http://explorer.natureserve.org/granks.htm

Newmaster, S.G., A. Lehela, P.W.C. Uhlig, S. McMurray and M.J.Oldham. 1998. Ontario Plant List. Ontario Ministry of Natural Resources, Ontario Forest Research Institute, Sault Ste. Marie, Ontario, Forest Research Information Paper No. 123, 550 pp. + appendices.

NHIC (Natural Heritage Information Centre). 2014. NHIC Species Lists. Available at: http://www.mnr.gov.on.ca/en/Business/NHIC/2ColumnSubPage/STDU_138223.html

Oldham, M.J., W.D. Bakowsky, and D.A. Sutherland. 1995. Floristic Quality Assessment System for Southern Ontario. Natural Heritage Information Center, OMNR (Ontario Ministry of Natural Resources). Peterborough, Ontario. 69 pp.

OMNRF (Ontario Ministry of Natural Resources). 2014. Species at Risk in Ontario List (updated June 27, 2014). Available at: http://www.mnr.gov.on.ca/en/Business/Species/2ColumnSubPage/MNR_SAR_CSSR_SARO_LST_EN.html [accessed July 25, 2014] and categories of at risk status http://www.ontario.ca/environment-and-energy/classifying-species-risk#section-3.

RMW (Regional Municipality of Waterloo). 1985a. Appendix 3: Reptiles and Amphibians in Environmentally Sensitive Policy Areas Technical Appendix. Approved by Council: 1986.

RMW (Regional Municipality of Waterloo). 1985b. Appendix 4: Mammals in Environmentally Sensitive Policy Areas Technical Appendix. Approved by Council: 1986.

RMW (Regional Municipality of Waterloo). 1996. Revisions to Waterloo Region's Significant Species List: Breeding Birds Component. Report to Planning and Culture Committee PC-96-021. Approved by Council: April 25, 1996.

R-B Added as a plant record from post-1990 environmental studies within Guelph with global and/or provincial significance. (Anderson and Frank 2004, unpublished) and subsequent revisions by A. Anderson over 2005-2008;

R-C Added based on records provided by Mike Oldham (NHIC) for Wellington County in 2005, verification of records in OAC herbarium (Jan. - Feb. 2008) and supplementary review by Mike Oldham Dec. 2007 - Feb. 2008. R-D New record for Wellington County, assumed significant (observed during field work conducted by Dougan & Associates 2005-2006).

Wellington County 2009

Defined by the number of survey sites where the species was found.

R1 1-3 sites; R2 4-6 sites; R3 6-10 sites.

			D D U (1						Crown		Structural	Biological	Preservation	Native Status		Compensation			
Tree Tag #	Scientific Name	Common Name	DBH1 ¹ (cm)	DBH2	DBH3	DBH4	DBH5	DBH6	Crown Reserve ² (m)	Height ³ (m)	Condition ⁴	Health ⁵	Preservation Priority ⁶	Native Status	Tree Action ⁸	Required ⁹	NAD83 UTM X Coordinate		Comments
1687	Acer negundo	Manitoba Maple	15	12	10			DDITO	03-05	03-05	Low	High	Low	Introduced	Preserve	N/A	562973,9623		overgrew dead cedar
1688	Thuja occidentalis	White Cedar	19	19	10				03-05	05-10	Medium	High	Medium	Native	Injure	Yes	562969.3361	4822659.4857	overgrew and replaced dead cedar
1689	Thuja occidentalis	White Cedar	15	15	12	10			03-05	05-10	Medium	High	Medium	Native	Preserve	N/A	562972.8552	4822657.2643	multi-stemmed clump
1690	Thuja occidentalis	Eastern White Cedar	20	20	20	15	12		03-05	05-10	Medium	Medium	Medium	Native	Preserve	N/A	562982.0564		supressed and leaning
1691	Acer platanoides	Norway Maple	30						05-10	10-15	Medium	Medium	Low	Introduced	Preserve	N/A	562978.4742	4822653.0938	supressed
1692 1693	Acer platanoides Acer platanoides	Norway Maple Norway Maple	33 35						10-15 05-10	10-15 10-15	High Medium	High High	Medium Medium	Introduced Introduced	Preserve Preserve	N/A N/A	562976.6431 562982.1672	4822658.2247 4822659.4770	
1694	Acer platanoides	Norway Maple	42						10-15	10-15	Medium	High	Medium	Introduced	Iniure	Yes	562979.3442	4822665.1020	
1695	Thuja occidentalis	White Cedar	35	30					05-10	05-10	Medium	High	Medium	Native	Preserve	N/A	562985.9943	4822665.7171	leaning, forked low
1696	Thuja occidentalis	White Cedar	30	25	20	10			03-05	05-10	Medium	Medium	Medium	Native	Preserve	N/A	562984.8243	4822664.6210	multi-stemmed clump
1697	Thuja occidentalis	White Cedar	35	20	10	15		-	05-10	05-10	Low	High	Low	Native	Injure	Yes	562993.9825	4822684.3643	leaning over creek
1698 1699	Thuja occidentalis	White Cedar European Buckthorn	35	20 20	12	10			03-05	05-10	Low	Low	Low	Native	Preserve	N/A N/A	562996.0715 563013.7724	4822687.7805 4822705.7081	leaning over creek
1699	Rhamnus cathartica Acer negundo	European Buckthorn Manitoba Manle	15	20	12	10			03-05	03-05	Low	Low Medium	Low	Introduced	Preserve Remove	N/A Yes	563013.7724	4822705.7081 4822711.4505	dead limbs leaning over
1700	Acer saccharinum	Silver Maple	59						10-15	05-10	Medium	High	Medium	Native	Remove	Yes	563822.9950	4823534.3615	limb removed
1702	Acer saccharinum	Silver Maple	72						05-10	05-10	Medium	High	High	Native	Remove	Yes	563812.6110	4823523.7275	cavities
1703	Acer saccharinum	Silver Maple	73						05-10	10-15	Low	Medium	Low	Native	Remove	Yes	563801.9880	4823512.8015	crown dieback, rotting crotch, cut limbs
1704	Acer saccharinum	Silver Maple	73						05-10	10-15	Medium	High	High	Native	Remove	Yes	563791.8820	4823502.5955	broken branch , poor form
1705	Acer saccharinum	Silver Maple	67						05-10	10-15	Low	High	Medium	Native	Remove	Yes	563781.6080	4823491.4835	broken branch , potential rot in bole, uneven crown
1706	Acer platanoides	Norway Maple	65						05-10	10-15	Low	Medium	Low	Introduced	Remove	Yes	563770.9520	4823480.4735	cracked healing, large cavity, leaning
1707	Acer platanoides	Norway Maple	48						10-15	10-15	Low	Medium	Low	Introduced	Preserve	N/A	563745.3567	4823433.0478	crack, cavity, crown dieback
1708	Picea glauca	White Spruce	50						05-10	10-15	High	Medium	High	Native	Preserve	N/A	563736.3161	4823423.7938	dead tip
1709	Acer platanoides	Norway Maple	14						03-05	05-10	Medium	High	Medium	Introduced	Preserve	N/A	563717.6047	4823419.3962	rooted in rocks - unstable
1710	Acer platanoides	Norway Maple	17	18		_			05-10	05-10	Medium	High	Medium	Introduced	Injure	Yes	563721.9186	4823417.1266	
1711 1712	Thuja occidentalis Acer saccharinum	White Cedar Silver Maple	25 20	11	13 6	/			03-05	05-10	Medium Medium	High High	High Medium	Native	Preserve	N/A Yes	563720.8214 563707.4977	4823413.0427 4823404.9686	
1712	Acer saccharinum	Silver Maple	40	/	0				05-10	10-15	Medium	High	High	Native	Injure	Yes	563694.9574	4823380.3635	leaning slightly
1714	Acer saccharinum	Silver Maple	40						05-10	10-15	Medium	High	High	Native	Preserve	N/A	563687.9430	4823374.7441	wound healed over
1715	Picea pungens	Blue Spruce	45						05-10	10-15	Medium	High	High		Preserve	N/A	563670.0810	4823355.8406	leaning
1716	Acer saccharinum	Silver Maple	82						10-15	15-20	Medium	High	High	Native	Preserve	N/A	563643.4693	4823322.0997	minor dieback , poor form
1717	Ulmus americana	White Elm	17						05-10	10-15	Medium	High	High	Native	Preserve	N/A	563636.3160	4823327.9566	rooted into rocks, old shoots from base
1718 1719	Picea pungens Acer saccharinum	Blue Spruce Silver Maple	45 70						05-10	10-15	High Low	High Low	High	Native	Injure Preserve	Yes N/A	563630.3375 563627.9392	4823328.5877 4823321.1057	extensive dieback and decay
1/19																			crown dieback, broken branchs, measured below
1720	Salix fragilis	Crack Willow	146						10-15	15-20	Low	Low	Low	Introduced	Preserve	N/A	563625.7434	4823315.5968	split so smaller
1721	Thuja occidentalis	Eastern White Cedar	17						03-05	05-10	Medium	High	Medium	Native	Remove	Yes	563619.4221	4823323.3086	rooted into boulder
1722 1723	Thuja occidentalis Ulmus americana	White Cedar White Elm	49 14	28	25				05-10	10-15 05-10	Medium Medium	High	Medium Low	Native	Injure Preserve	Yes N/A	563616.9922 563615.7751	4823313.9633 4823307.6840	multi-stemmed clump supressed, insect damage, dieback
1723	Ulmus americana Thuja occidentalis	White Elm White Cedar	32						03-05	05-10	Low	Low Medium	Low	Native	Preserve Remove	N/A Yes	563615.7751 563602.1838		supressed, insect damage, dieback rotting cavity at base
1725	Ulmus americana	American Elm	10						01-03	05-10	Medium	High	Medium	Native	Remove	Yes	563591.3475	4823297.0080	
1726	Picea glauca	White Spruce	38						05-10	10-15	Medium	High	Medium	Native	Injure	Yes	563575.9532	4823277.3626	
1726	Ulmus americana	American Elm	15	12					03-05	05-10	Medium	High	Medium	Native	Injure	Yes	563578.7045	4823285.3109	growing from rocks
1728	Pinus resinosa	Red Pine	67						05-10	10-15	Low	Medium	Low	Native	Injure	Yes	563559.3723	4823256.1359	P
1729	Thuja occidentalis	White Cedar	17	16	14	12			03-05	05-10	Medium	High	Medium	Native	Preserve	N/A	563551.0467		multi-stemmed clump,
1730	Pinus resinosa	Red Pine	62						05-10	05-10	Low	Low	Low	Native	Remove	Yes	563528.4002		likely pinunig, dieback and dead limbs
1731	Acer saccharinum	Silver Maple	34						05-10	05-10	Low	Medium	Low	Native	Remove	Yes	563510.7350	4823211.2858	likely acer x freemanii, epicormic shoots , leaning
1732	Acer x freemanii	Hybrid Maple	26	10	7				03-05	05-10	High	High	High	Introduced	Preserve	N/A	563475.3098	4823171.7049	poor form but healthy
1733	Juniperus virginiana	Eastern Red Cedar	21						03-05	05-10	High	High	High	Native	Preserve	N/A	563459.2635	4823127.4567	
1734	Juniperus virginiana	Eastern Red Cedar	22						03-05	05-10	Medium	Medium	Medium	Native	Preserve	N/A Vor	563464.2437	4823134.6385	
1735 1736	Picea pungens Picea abies	Blue Spruce Norway Spruce	32 45						03-05	15-20 10-15	High High	Medium High	Medium High	Introduced Introduced	Remove	Yes Yes	563473.0378 563462.6929	4823142.9099 4823148.7254	шераск
1730	Picea abies	Norway Spruce	65						05-10	15-20	Medium	High	Medium	Introduced	Remove	Yes	563474.9610	4823148.7234	cavity at base
1738	Picea pungens	Blue Spruce	43						03-05	15-20	High	High	High	Introduced	Remove	Yes	563480.0159	4823158.9932	
1739	Thuja occidentalis	Eastern White Cedar	37	32	30	30	25		05-10	10-15	Medium	High	Medium	Native	Remove	Yes	563481.2015	4823155.4574	
1740	Pinus sylvestris	Scotch Pine	25						03-05	05-10	Medium	Medium	Low	Introduced	Remove	Yes	563496.2109	4823168.3592	
1741	Pinus sylvestris	Scotch Pine	25						03-05	05-10	Medium	Medium	Low	Introduced	Preserve	N/A	563499.1949	4823169.1282	
1742 1743	Pinus sylvestris Thuia occidentalis	Scotch Pine Eastern White Cedar	34 15	13	7	7	7	7	05-10	05-10	Low	Low Medium	Low	Introduced Native	Remove	Yes N/A	563497.1945 563486.8368	4823169.9655 4823181.0005	dieback
1743	Thuja occidentalis Salix fragilis	Eastern White Cedar Crack Willow	15 200	13	/	7	7	/	05-10	05-10	Low	Medium	Low	Native Introduced	Preserve	N/A Yes	563486.8368 563506.9012	4823181.0005 4823190.9290	broken multistem poor form, broken branches, crotch decay
1744	Pinus sylvestris	Scotch Pine	34						03-05	05-10	Medium	Medium	Medium	Introduced	Remove	Yes	563522.1996	4823190.9290	poor form, proven prancines, croten deedy
1746	Acer saccharinum	Silver Maple	33						03-05	05-10	High	High	High	Native	Preserve	N/A	563520.2420	4823203.1380	
1747	Acer saccharinum	Silver Maple	19						03-05	05-10	Medium	High	High	Native	Preserve	N/A	563525.5181	4823207.1674	leaning
1748	Acer saccharinum	Silver Maple							15-20	15-20	Medium	High	High	Native	Preserve	N/A	563534.2358	4823215.1342	poor form but no decay
1749	Acer saccharinum	Silver Maple							10-15	15-20	Medium	Medium	Medium	Native	Preserve	N/A	563541.5353	4823214.2557	-
1750	Acer saccharinum	Silver Maple	13						03-05	05-10	Medium	High	High	Native	Preserve	N/A	563537.5579		wound on lower bole callusing
1751 1752	Acer saccharinum Picea abies	Silver Maple Norway Spruce	88 48						15-20 05-10	15-20 15-20	Low High	Medium High	Low High	Native Introduced	Preserve Preserve	N/A N/A	563552.3770 563562.2303	4823230.9536 4823239.0951	crown dieback , poor form
1752	Picea glauca	White Spruce	48 30						03-05	05-10	High	High	High	Native	Remove	Yes	563562.2303	4823239.0951	
1754	Acer platanoides	Norway Maple	13	11	6				03-05	05-10	Low	High	Low	Introduced	Remove	Yes	563567.5243	4823212.0350	
<u> </u>		. /								•			•						•

Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>				D D U u 1						Creation		Structural	Biological	Preservation	Native Status		Compensation			
Displace Burgence Burgence <	Tree Tag # S	cientific Name	Common Name	DBH1 ¹	DBH2	DRH3	DBH4	DBH5	DBH6	Crown Reserve ² (m)	Height ³ (m)									Comments
im Augended							00114	DUITS	DDITO		-			-	Introduced					connents
im Concerne Concerne Concerne Concerne C						,														
	1757		, i	11									Medium		Introduced			563565.9015	4823219.0274	suppressed
Image And a	1758	Acer platanoides	Norway Maple	11						03-05	05-10	Low	Low	Low	Introduced	Remove	Yes	563565.1889	4823217.5867	
Image Image <t< td=""><td>1759</td><td>Acer platanoides</td><td>Norway Maple</td><td>10</td><td></td><td></td><td></td><td></td><td></td><td>01-03</td><td>05-10</td><td>Medium</td><td>Medium</td><td>Low</td><td>Introduced</td><td>Remove</td><td>Yes</td><td>563566.7251</td><td>4823219.1628</td><td>suppressed</td></t<>	1759	Acer platanoides	Norway Maple	10						01-03	05-10	Medium	Medium	Low	Introduced	Remove	Yes	563566.7251	4823219.1628	suppressed
Image Normal Normal<						6														
Dia Persone P						11	10													
Image Image <t< td=""><td></td><td></td><td></td><td></td><td>25</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>					25															
Imack Symbol Symbol Symbol Symbol <td></td>																				
1200 Consister Consis												,		,						
Image Frank Frank <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													5							
108 <td></td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												5								
1711 Resuming 18 </td <td></td> <td>Acer saccharinum</td> <td>Silver Maple</td> <td>121</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>15-20</td> <td>Medium</td> <td></td> <td>Medium</td> <td>Native</td> <td>Preserve</td> <td>N/A</td> <td>563567.0234</td> <td>4823245.5253</td> <td>dieback , poor form</td>		Acer saccharinum	Silver Maple	121							15-20	Medium		Medium	Native	Preserve	N/A	563567.0234	4823245.5253	dieback , poor form
Dim Dim <td>1769</td> <td>Salix fragilis</td> <td>Crack Willow</td> <td>39</td> <td>120</td> <td></td> <td></td> <td></td> <td></td> <td>10-15</td> <td>15-20</td> <td>Low</td> <td>Low</td> <td>Low</td> <td>Introduced</td> <td>Preserve</td> <td>N/A</td> <td>563582.4800</td> <td>4823259.7036</td> <td>falling apart, dead limbs</td>	1769	Salix fragilis	Crack Willow	39	120					10-15	15-20	Low	Low	Low	Introduced	Preserve	N/A	563582.4800	4823259.7036	falling apart, dead limbs
1712 Maccoleral Macromolor 3.6 V <t< td=""><td>1770</td><td>Acer saccharinum</td><td>Silver Maple</td><td>47</td><td></td><td></td><td></td><td></td><td></td><td>05-10</td><td>10-15</td><td>Medium</td><td>High</td><td>Medium</td><td>Native</td><td>Remove</td><td>Yes</td><td>563603.0563</td><td>4823258.5818</td><td>poor form, some wounds healng</td></t<>	1770	Acer saccharinum	Silver Maple	47						05-10	10-15	Medium	High	Medium	Native	Remove	Yes	563603.0563	4823258.5818	poor form, some wounds healng
171 1	1771	Pinus strobus		34						03-05	10-15	Low	Low	Low	Native	Preserve	N/A		4823267.8957	almost dead
1111 11111 1111 1111 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>													-							
Inst Subservice Number of the standard Numer of the standard Number of the					11	9	8						5	,						
Image is a serie is serie is a														~						
Image Add watches Sec and add watches Sec and add watches None Parter None None None None <th< td=""><td></td><td></td><td></td><td></td><td></td><td>20</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>						20														
Dip Dip <td>1//6</td> <td>,</td> <td></td> <td></td> <td>24</td> <td>20</td> <td></td>	1//6	,			24	20														
1179 Type Sympositic Letter Winc 4 9	1777	Acer saccharinum	Silver Maple	94						10-15	15-20	Low	Low	Low	Native	Preserve	N/A	563589.4733	4823284.7608	large cavity. good wildlife tree, extensive dieback
Displacementalie Latener Water Color A	1778	Thuja occidentalis	Eastern White Cedar	32	35	22	19			05-10	10-15	Medium	High	High	Native	Preserve	N/A	563591.7809	4823285.3763	
Dist Sympositic Sympositic </td <td>1779</td> <td>Thuja occidentalis</td> <td>Eastern White Cedar</td> <td>34</td> <td>38</td> <td>32</td> <td>30</td> <td>28</td> <td>17</td> <td>05-10</td> <td>10-15</td> <td>Low</td> <td>High</td> <td>Medium</td> <td>Native</td> <td>Preserve</td> <td>N/A</td> <td>563597.3516</td> <td>4823282.2977</td> <td>large burl, cracked but healing</td>	1779	Thuja occidentalis	Eastern White Cedar	34	38	32	30	28	17	05-10	10-15	Low	High	Medium	Native	Preserve	N/A	563597.3516	4823282.2977	large burl, cracked but healing
Image Startward S																Preserve				
1011 Tug-scatcardine Salemy Marce Carler 64 1		,											5			Preserve				J L L L L L L L L L L
1744 Charubox 1.0 0.0 0.0 0.0 0.0 0.00 0.000 0.000 0.0000 0.0000 0.0000 0.0					29															
This Substrain Conduction Conduction <td></td>																				
109 Areplandes New MysRep 90 90 90 90 90 90 90 900 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>·· •</td></t<>													5	-						·· •
1929 Chask condencial Convertial Convertial Convertial Non-													5							
Instancial Act planamic Normal Mark Instancial Instancial Instancial Instancial Instancial Normal Mark Instancial Instanci Instanci Instanc			, i		20	18	18	17	17				5							
1979 Salit pagis Cosk Wiles 20 1<					20	10	10	.,	17											
199 Accessform Step Mage 3 C																				-
1722 Theory Contention Same Warking Same Warking <td></td> <td>Acer saccharinum</td> <td>Silver Maple</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Medium</td> <td></td> <td>High</td> <td>Native</td> <td>Remove</td> <td></td> <td></td> <td></td> <td></td>		Acer saccharinum	Silver Maple									Medium		High	Native	Remove				
1978 Accesscharium Silver Maple 38 K K K Silver Maple Maple Name Personance Name Silver Maple Silver Maple <t< td=""><td>1791</td><td>Acer platanoides</td><td>Norway Maple</td><td>43</td><td></td><td></td><td></td><td></td><td></td><td>05-10</td><td>05-10</td><td>Medium</td><td>High</td><td>Medium</td><td>Introduced</td><td>Remove</td><td>Yes</td><td>563695.8812</td><td>4823364.2742</td><td>crimson</td></t<>	1791	Acer platanoides	Norway Maple	43						05-10	05-10	Medium	High	Medium	Introduced	Remove	Yes	563695.8812	4823364.2742	crimson
1939 Teps program Bine Struce 40 10 10 0 0 0 0 </td <td>1792</td> <td>Thuja occidentalis</td> <td>Eastern White Cedar</td> <td>60</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>03-05</td> <td>10-15</td> <td>Low</td> <td>High</td> <td>Medium</td> <td>Native</td> <td>Remove</td> <td>Yes</td> <td>563703.1745</td> <td>4823372.3902</td> <td>big crack</td>	1792	Thuja occidentalis	Eastern White Cedar	60						03-05	10-15	Low	High	Medium	Native	Remove	Yes	563703.1745	4823372.3902	big crack
1975 Prescapangen Blue Space 60 60 60 60 60 60-10 High High High High High High Presce NAA 552716701 423372333 Inclusion 1797 Acer planades Norwy Maple 51 12 12 10-15 Medium High Medium Inclusion Finance Norwy Maple 53716531 4233724331 declamption 1799 Acer planades Norwy Maple 51 10 10-15 Medium High Medium Inclusion Finance Finance S377601 423405800 comunication 1799 Acer planades Norwy Maple 62 C C 10-15 Low Medium Low Inclusion High High High Nito Nito 5374501 423405300 Gormaleak 1800 Acer planades Norwy Maple 62 C 0 10-15 Hole High High Nito Nito		Acer saccharinum										Medium			Native	Preserve				
1978 Apple Spectres 2 A 2 M M Main M Medum M M																				cracked
1979 Acceptiancies Nonwy Maple 51 15 12 15 12 12 12 Acceptiancies Nonwy Maple 57 12 12 12 Acceptiancies Nonwy Maple 57 12 12 12 Acceptiancies Nonwy Maple 57 12 12 12 Medium Introduced Persone NA 5377511 4233210.00 genancies Nonwy Maple 62 12 12 12 12 Medium Introduced Persone NA 5377511 4233210.00 genancies Common Maple 4233210.00 Genancies Genancies Nonwy Maple 62 12 <												,	5							
1798 Acce platnoides Norwy Maple 57 1/4																				
1799 Acce platanoides Norwy Maple 47 Image: Constraint of the standard of the stand					15	12							5							
1000 Accer plannolde Norwy Maple 62 Norw Mode Norw Mode Norw Mode Pressure Not S63746731 482416381 482416381 degrads degrads 1802 Accer sachanum Shew Maple 66 Co Co O O O O O O Mode Medium Mathe Pressure N/A 563463054 423112.328 degrads degrads degrads Accer sachanum N/A S6346570 42310137 Mode degrads Accer sachanum S6445074 42310137 Degrads Degrads degrads Accer sachanum N/A S63465704 423076271 probably tree 342 form the previous NRS study 1000 Tubo cocdental Sterm Mile Codental S100 Mode Mode Medium Nate Renow Yes S6338153 42306820 <td< td=""><td></td><td></td><td>, i</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			, i																	
1800 Accer platanoles Norway Maple 62 Value Value Norway Maple 66 Value Norway Maple 66 Value Norway Maple 66 Value Norway Maple Value Value Norway Maple <t< td=""><td></td><td></td><td>, ,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			, ,																	
1802 Acer saccharium Silver Mape																				
1803 Lindendent uppfera State Tup Tee 38 C <																				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1804 Ulmus americani American Em 16 16 16 16 16 16 16 16 Marcina Em Marcina Em 16 16 Marcina Em Marcin Em Marcina Em Marc																				
1806 Thuja occidentalis Eatern White Cede 32 28 0 0 0.0 0.0 Medium Medium Native Remove Yes 56338.931 42308.771 probably tree 346 from the previous NRS survey 1007 Acer saccharium Silver Maple 100 1 100 10-15 15-20 Low Medium Native Remove Yes 56338.931 42308.725 probably tree 346 from the previous NRS survey 1808 Acer platancides Norway Maple 41 C C C 0.510 Off.10 Medium Medium Medium Medium Introduced																Preserve				
Norway Maple 109 M M M 101-15 15-20 Low Medium Low Native Remove Yes 553381.135 4823078.925 broken leader, rotting, poor form, dieback; probably tree 345 from previous NR3 survey 1808 Acer platanoides Norway Maple 41 C 05-10 05-10 High Medium Introduced Injure Yes 563361.556 482306.940 probably tree 345 from previous NR3 survey 1809 Acer platanoides Norway Maple 40 C 05-10 05-10 Medium Medium Introduced Injure Yes 563361.556 482306.04018 probably tree 345 from the previous NR3 survey 1810 Acer saccharinum Silver Maple 28 C 05-10 10-15 High High Introduced Injure Yes 563351.971 482305.8004 minor dieback; probably tree 345 from the previous NR3 survey 1811 Acer platanoides Norway Maple 26 C 05-10 10-15 High High High Introduced	1805	Acer platanoides	Norway Maple	59							03-05	Low	Medium	Low	Introduced	Remove	Yes	563402.5307		
1807 Accer staturinum Silver Maple 109 100 101-15 15-20 Low Medium Low Madium Low Madium Medium Medium Medium Medium Medium Medium Medium Medium Introduced Introduced Medium Introduced Introduced <td>1806</td> <td>Thuja occidentalis</td> <td>Eastern White Cedar</td> <td>32</td> <td>28</td> <td></td> <td></td> <td></td> <td></td> <td>03-05</td> <td>05-10</td> <td>Medium</td> <td>High</td> <td>Medium</td> <td>Native</td> <td>Remove</td> <td>Yes</td> <td>563389.8391</td> <td>4823081.7717</td> <td></td>	1806	Thuja occidentalis	Eastern White Cedar	32	28					03-05	05-10	Medium	High	Medium	Native	Remove	Yes	563389.8391	4823081.7717	
1000 Accer platanoides Norway Maple 41 C C <	1907	Acer saccharinum	Silver Maple	109						10-15	15-20	Low	Medium	Low	Native	Remove	Yes	563381.1365	4823078.9259	
1809Acer platanoidesNorway Maple40Image of the second secon		Acer platapoides	Nonway Maple	41						05-10	05-10	High	Medium	Medium	Introduced	Injure	Yes		4823068 3440	
1809 Acce platabilities Notway Maple 4d or	1000	•										,								
Accesscharium Silver Mape 28 28 28 28 28 28 28 28 28 28 29 20	1809	Acer platanoides	Norway Maple	40						05-10	05-10	Medium	Medium	Medium	Introduced	Injure	Yes	563356.6094	4823064.0186	
1810 1810			au														N.			
111 Accer platanoides Norway Maple 46 \sim <td>1810</td> <td>Acer saccharinum</td> <td>Silver Maple</td> <td>28</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>05-10</td> <td>10-15</td> <td>Medium</td> <td>Medium</td> <td>Medium</td> <td>Native</td> <td>Injure</td> <td>Yes</td> <td>563351.9701</td> <td>4823058.0064</td> <td></td>	1810	Acer saccharinum	Silver Maple	28						05-10	10-15	Medium	Medium	Medium	Native	Injure	Yes	563351.9701	4823058.0064	
Acer platanoides Norway Maple 29 No No No Norway Maple 29 No No No Norway Maple 29 No		Acerplatanoides	Norway Maple	46						05-10	10-15	High	High	High	Introduced	Injure	Yes	563347 1917	4823054 6370	mapic
1812 Accer platanolize Norwy Maple 29 29 20 0510 0510 0500 0000 medium 01000 indication													, , , , , , , , , , , , , , , , , , ,							
1813 Accer platanolices Norway Maple 22 C C G	1812	Acer platanoides	Norway Maple	29						05-10	05-10	LOW	wedium	LOW	introduced	injure	res	563331.9291	4823037.5192	previous NRSI survey
Act or saccharium Silver Maple 34 32 <t< td=""><td>1012</td><td>Acer platanoides</td><td>Norway Maple</td><td>22</td><td></td><td></td><td></td><td></td><td></td><td>03-05</td><td>05-10</td><td>Medium</td><td>Medium</td><td>Medium</td><td>Introduced</td><td>Injure</td><td>Yes</td><td>563325.6744</td><td>4823032.1802</td><td>minor dieback ; probably tree 337 from previous</td></t<>	1012	Acer platanoides	Norway Maple	22						03-05	05-10	Medium	Medium	Medium	Introduced	Injure	Yes	563325.6744	4823032.1802	minor dieback ; probably tree 337 from previous
Acer saccharinum Silver Maple 38 32 32 6 6 05-10 10-15 Medium Medium Medium Native Remove Yes 563329-761 4823021263 moderate dieback in crown / Identified as trie 335 1816 Acer saccharinum Silver Maple 34 26 0 05-10 10-15 Medium Medium Native Remove Yes 563329-761 4823021263 moderate dieback in crown / Identified as trie 335 1816 Acer saccharinum Silver Maple 34 26 0 05-10 10-15 Medium Medium Native Remove Yes 563329-761 48230119753 crowne Ideback in crown / Ideback 1817 Acer platnoides Norway Maple 35 0 03-05 05-10 High Medium Medium Introduced Injure Yes 563310-734 48230159774 moderate dieback in crown / Ideback		•	, ,													,				
1815 Acer sacchannum Silver Maple 38 32 6 0 0-10 10-10 Medium Medium Native	1014																			
1816 Acer saccharinum Silver Maple 34 26 Image: Constraint of the system Medium Medium Medium Medium Native Remove Yes 563324827 4820119753 crown dieback 1817 Acer platanoides Norway Maple 35 Image: Constraint of the system 03-05 05-10 High Medium Medium Introduced Injure Yes 563310.7349 48201159774 minor dieback	1815	Acer saccharinum	Silver Maple	38	32					05-10	10-15	Medium	Medium	Medium	Native	Remove	Yes	563329.7618	4823021.2363	
		Acer saccharinum			26											Remove				crown dieback
1818 Acer platanoides Norway Maple 26 03-05 05-10 Medium Low Introduced Remove Yes 563236.2122 4822940.3561 dieback														Medium		Injure				
	1818	Acer platanoides	Norway Maple	26						03-05	05-10	Medium	Medium	Low	Introduced	Remove	Yes	563236.2122	4822940.3561	dieback

Tree			DBH1 ¹						Crown		Structural	Biological	Preservation	Native Status		Compensation	NAD83 UTM	Zono 17N	
	Scientific Name	Common Name	(cm)	DBH2	DBH3	DBH4	DBH5	DBH6 F	Reserve ² (m)	Height ³ (m)	Condition ⁴	Health ⁵	Priority ⁶	7	Tree Action ⁸	Required ⁹	X Coordinate		Comments
1819	Acer saccharinum	Silver Maple	47						05-10	05-10	Medium	Medium	Medium	Native	Remove	Yes	563209.7541	4822905.8035	dieback
1820	Acer saccharinum	Silver Maple	45						05-10	05-10	Medium	Medium	Medium	Native	Remove	Yes	563197.3529	4822890.0943	epicormic shoots
1821	Acer saccharinum	Silver Maple	67						10-15	10-15	Low	Medium	Low	Native	Remove	Yes	563192.2734	4822878.1606	broken limbs , cracked , large cavity
1822 1823	Picea pungens	Blue Spruce	32 40						03-05	10-15 10-15	High Medium	High	High Medium		Remove	Yes	563183.7015 563181.8616	4822875.9544 4822862.6471	leep ever meet
1823	Picea pungens Acer platanoides	Blue Spruce Norway Maple	23						03-05	05-10	Low	High Low	Low	Introduced	Remove Remove	Yes Yes	563176.1946	4822862.6471 4822858.8306	lean over creek cavity, leaning, epicormic shoots
1825	Acer platanoides	Norway Maple	38						05-10	05-10	High	Medium	Medium	Introduced	Remove	Yes	563172.1456	4822860.3478	
1826	Acer platanoides	Norway Maple	29						03-05	05-10	Low	Low	Low	Introduced	Remove	Yes	563172.4982	4822855.7159	cracked, extensive dieback
1827	Acer platanoides	Norway Maple	40						05-10	05-10	Medium	Medium	Low	Introduced	Remove	Yes	563166.7072	4822855.6318	
1828	Acer saccharinum	Silver Maple	31						05-10	05-10	Low	Low	Low	Native	Remove	Yes	563124.3733	4822820.3635	beaver damage and dieback
1829 1830	Acer saccharinum Acer platanoides	Silver Maple Norway Maple	36						05-10 05-10	05-10	Medium	Low High	Low Medium	Native Introduced	Remove	Yes Yes	563113.0478 563058.9030	4822806.2261 4822761.0525	dieback and wounds cracked
1830	Acer plataholdes	Silver Maple	125						10-15	15-20	Medium	High	High	Native	Preserve	N/A	563097.1606	4822761.0325	Clacked
1832	Acer saccharinum	Silver Maple	123						10-15	15-20	Low	Medium	Low	Native	Remove	Yes	563078.7661	4822740.9106	half of tree broken off
1833	Acer saccharinum	Silver Maple	50						05-10	10-15	Low	Medium	Low	Native	Preserve	N/A	563078.8025	4822720.1933	broken, split bole
1834	Acer saccharinum	Silver Maple	50						05-10	10-15	Medium	High	High	Native	Preserve	N/A	563093.3624	4822734.7288	leaning
1835	Acer saccharinum	Silver Maple	51						05-10	10-15	Medium	High	High	Native	Preserve	N/A	563100.4628	4822745.1241	leaning slightly
1836	Acer platanoides	Norway Maple	25						03-05	05-10	Low	Low	Low	Introduced	Remove	Yes	563132.4442	4822789.3962 4822795.3445	
1837 1838	Acer platanoides Acer platanoides	Norway Maple Norway Maple	24 26						03-05	05-10 05-10	Medium Low	Low Medium	Low Low	Introduced Introduced	Remove Remove	Yes Yes	563133.0866 563139.5212	4822/95.3445 4822801.0078	dieback , cracked healing
1839	Picea abies	Norway Maple	20						03-05	05-10	High	High	High	Introduced	Remove	Yes	563140.8414	4822801.0078	dieback, cracked healing
1840	Picea abies	Norway Spruce	25						03-05	05-10	High	High	High	Introduced	Remove	Yes	563143.4145	4822817.9019	
1841	Picea abies	Norway Spruce	18						03-05	05-10	High	High	High	Introduced	Remove	Yes	563141.2621	4822819.5942	
1842	Picea pungens	Blue Spruce	10	13	20				03-05	05-10	Medium	High	High	Introduced	Remove	Yes	563154.4716	4822810.4363	fallen tree that resprouted
1843	Picea pungens	Blue Spruce	18						01-03	05-10	Medium	High	Medium	Introduced	Remove	Yes	563173.3080	4822835.4385	leaning
1844 1845	Picea abies	Norway Spruce Manitoba Maple	20 14						01-03	05-10 05-10	Medium Medium	High High	Medium Medium	Introduced Introduced	Remove	Yes Yes	563172.2537 563182.8064	4822832.0166 4822838.1419	leaning
1846	Acer negundo Picea abies	Norway Spruce	14						03-05	05-10	Medium	High	Medium	Introduced	Remove	Yes	563184.8657	4822836.1419	
1847	Picea pungens	Blue Spruce	45						03-05	05-10	High	High	High	Introduced	Remove	Yes	563190.9958	4822855.1377	
1848	Acer saccharinum	Silver Maple	36						05-10	05-10	Low	Low	Low	Native	Remove	Yes	563204.8715	4822858.3019	
1849	Thuja occidentalis	Eastern White Cedar	26	30	23	18			03-05	05-10	Low	Medium	Low	Native	Remove	Yes	563224.4243	4822884.9911	fallen over
1850	Acer saccharinum	Silver Maple	73						10-15	15-20	High	High	High	Native	Remove	Yes	563237.8559	4822897.5194	
1851	Acer saccharinum	Silver Maple	110						15-20	15-20 10-15	Low	Medium	Medium	Native	Remove	Yes	563266.2309	4822928.2342	and a state of an Incomentation
1852 1853	Picea glauca Thuja occidentalis	White Spruce Eastern White Cedar	35 18						03-05	05-10	High Low	Medium Low	Medium Low	Native Native	Remove Remove	Yes Yes	563273.4678 563283.0081	4822926.7560 4822943.9484	some dieback on lower crown dieback
1853	Thuja occidentalis	Eastern White Cedar	23	18					03-05	05-10	Medium	High	Medium	Native	Remove	Yes	563286.0349	4822943.9484	Geback
1855	Thuja occidentalis	Eastern White Cedar	30	20	22	15			03-05	05-10	Medium	High	High	Native	Preserve	N/A	563288.1816	4822929.8029	
1856	Picea pungens	Blue Spruce	50						03-05	10-15	High	High	High	Introduced	Remove	Yes	563289.9840	4822938.6377	
1857	Picea pungens	Blue Spruce	40	30					03-05	10-15	High	Medium	Medium	Introduced	Preserve	N/A	563306.2175	4822942.3261	
1858	Picea abies	Norway Spruce	35						03-05	05-10	Medium	Low	Low	Introduced	Remove	Yes	563301.9722	4822954.7117	
1859 1860	Picea abies Picea pungens	Norway Spruce Blue Spruce	35	-					03-05	05-10	Medium	Low	Low	Introduced Introduced	Injure Remove	Yes Yes	563323.4734 563317.6314	4822965.0625 4822983.7788	dieback
1861	Acer saccharinum	Silver Maple	45						05-05	10-15	Low	Low	Low	Native	Remove	Yes	563329.4340	4822983.7788	decayed, broken
1862	Picea pungens	Blue Spruce	35						03-05	05-10	Medium	Medium	Medium	Introduced	Remove	Yes	563337.0250	4823002.8805	overgrown, dieback
1863	Acer saccharinum	Silver Maple	67						05-10	10-15	Medium	Medium	Medium	Native	Injure	Yes	563359.3656	4822999.3240	dieback
1864	Pinus sylvestris	Scotch Pine	30						03-05	15-20	Medium	Medium	Low	Introduced	Remove	Yes	563354.1335	4823015.7424	
1865	Pinus sylvestris	Scotch Pine	30						03-05	15-20	Medium	Medium	Low	Introduced	Remove	Yes	563356.0543	4823017.8038	
1866	Acer saccharinum	Silver Maple	115	-				$ \downarrow$	10-15	15-20	Medium	High	High	Native	Remove	Yes	563358.3492	4823020.1020	
1867 1868	Acer saccharinum Acer saccharinum	Silver Maple Silver Maple	81 110	-					10-15 10-15	10-15 15-20	Medium	High High	Medium Medium	Native	Remove Remove	Yes Yes	563352.4424 563372.8473	4823033.5735 4823033.7790	
1869	Acer saccharinum	Silver Maple	95						10-15	15-20	High	High	High	Native	Remove	Yes	563380.2072	4823035.2334	
1870	Thuja occidentalis	Eastern White Cedar	20	18					03-05	05-10	Medium	High	Medium	Native	Remove	Yes	563378.5853	4823040.1736	supressed
1871	Acer saccharinum	Silver Maple	135						10-15	15-20	Low	Medium	Medium	Native	Remove	Yes	563383.2764	4823049.0024	
1872	Thuja occidentalis	Eastern White Cedar	32						03-05	05-10	High	Medium	Medium	Native	Remove	Yes	563383.0721	4823051.4031	cracked healing
1873	Thuja occidentalis	Eastern White Cedar	23	14					03-05	03-05	Medium	Medium	Low	Native	Remove	Yes	563381.0194	4823051.5526	
1874 1875	Acer saccharinum	Silver Maple	25						05-10 10-15	05-10 15-20	Medium Low	Medium Medium	Medium Medium	Native Native	Remove Remove	Yes Yes	563389.8163 563402.1819	4823058.7342 4823065.8105	
1875	Thuia occidentalis	Eastern White Cedar	33	35	16				03-05	05-10	Medium	High	Medium	Native	Remove	Yes	563402.1819	4823065.8105	uecay, poor torm
1870	Thuja occidentalis	Eastern White Cedar	23	28	.0				03-05	10-15	Medium	Medium	Medium	Native	Remove	Yes	563401.8799	4823009.3949	
1878	Thuja occidentalis	Eastern White Cedar	17	13					03-05	05-10	Medium	Medium	Medium	Native	Remove	Yes	563417.7185	4823087.9712	callused wounds , leaning over , supressed
1879	Thuja occidentalis	Eastern White Cedar	14						01-03	03-05	Low	Medium	Low	Native	Remove	Yes	563417.3696	4823088.6119	callused wounds , leaning over , supressed
1880	Thuja occidentalis	Eastern White Cedar	13						01-03	03-05	High	High	High	Native	Remove	Yes	563420.4848	4823088.4496	suppressed , leaning over slightly
1881	Thuja occidentalis	Eastern White Cedar	11						01-03	03-05	Medium	High	Medium	Native	Remove	Yes	563420.7191	4823088.7175	
1882 1883	Thuja occidentalis Thuja occidentalis	Eastern White Cedar Eastern White Cedar	16 16	14					01-03	03-05	Low Medium	Low High	Low Medium	Native Native	Remove Remove	Yes Yes	563420.3984 563421.0928	4823086.3639 4823085.6256	suppressed , leaning suppressed , leaning
1883	Thuja occidentalis	Eastern White Cedar Eastern White Cedar	16	14					03-05	05-10	Low	Low	Low	Native	Remove	Yes	563421.0928	4823085.6256 4823083.0728	bark mostly gone, but callused
1885	Thuja occidentalis	Eastern White Cedar	14						01-03	05-10	Low	Medium	Low	Native	Remove	Yes	563429.4010	4823083.1829	
1886	Thuja occidentalis	Eastern White Cedar	11						01-03	03-05	Medium	Medium	Medium	Native	Remove	Yes	563425.5007	4823085.1538	suppressed , leaning
1887	Thuja occidentalis	Eastern White Cedar	11						01-03	03-05	Medium	Low	Low	Native	Remove	Yes	563426.1388	4823085.5649	
1888	Thuia occidentalis	Eastern White Cedar							01-03	05-10	Low	Medium	Low	Native	Remove	Yes	563422.9414		suppressed , leaning

Tree			DBH1 ¹						Crown		Structural	Biological	Preservation	Native Status		Compensation	NAD83 UTM	Zone 17N Y	
Tag #	Scientific Name	Common Name	(cm)	DBH2	DBH3	DBH4	DBH5	DBH6	Reserve ² (m)	Height ³ (m)	Condition ⁴	Health ⁵	Priority ⁶		Tree Action ⁸	Required ⁹	X Coordinate	Coordinate	Comments
1889	Thuja occidentalis	Eastern White Cedar	19						01-03	05-10	Low	Medium	Low	Native	Remove	Yes	563429.4847	4823081.4314	minor dieback , leaning over
1890	Thuja occidentalis	Eastern White Cedar	26						01-03	03-05	Low	Medium	Low	Native	Remove	Yes	563430.1324	4823080.0301	1 broken limbs
1891	Acer platanoides	Norway Maple	132						10-15	15-20	Medium	High	Medium	Introduced	Remove	Yes	563435.7548	4823087.6466	overall healthy tree but spreading form and cracked codomjnant stems may fail
1892	Acer saccharinum	Silver Maple	100	100					10-15	15-20	Low	Medium	Low	Native	Remove	Yes	563429.6037	4823087.5224	2nd stem broken and recently fallen, decay and included bark in fork, other limb may fail
1893	Prunus virginiana	Choke Cherry	12	10					01-03	03-05	Low	Low	Low	Native	Remove	Yes	563428.2216	4823091.3996	Decay and large wound
1894	Acer saccharinum	Silver Maple	140						10-15	15-20	Low	Medium	Low	Native	Remove	Yes	563419.7388	4823089.5750	forked above 2m, broken limbs , 2 lateral limbs are main concern, minor dieback in crown
1895	Picea abies	Norway Spruce	55		22				05-10	15-20	High	High	High	Introduced	Preserve	N/A	563444.3072	4823097.7137	
1896	Sorbus decora	Northern Mountain-asł	27	23	22				05-10	10-15	Medium	Medium	Low	Native	Preserve	N/A	563445.0023	4823102.9035	spreading , suppressed , epicormic shoots - see photos to confrim species
1897	Juniperus communis	Ground Juniper	13						03-05	01-03	Low	0	Low	Native	Preserve	N/A	563447.4755	4823105.8497	spreading
1898	Thuja occidentalis	Eastern White Cedar	26	19					03-05	05-10	Medium	High	Medium	Native	Preserve	N/A	563437.7992	4823115.5716	
1899	Juniperus communis	Ground Juniper	12						03-05	01-03	Medium	High	Medium	Native	Preserve	N/A	563449.7349	4823106.5089	spreading , pruned
1900	Thuja occidentalis	Eastern White Cedar	27						03-05	05-10	Low	Medium	Low	Native	Preserve	N/A	563032.5983	4822728.6638	Tree number 318 in previous NRSI survey.
332	Ulmus americana	White Elm	81						26					Native	N/A		563272.9117	4822970.9858	Tree not present. Removed since previous NRSI survey.
343	Thuja occidentalis	White Cedar	24						3					Native	N/A		563375.3264	4823076.3021	Tree not present. Removed since previous NRSI survey.
344	Thuja occidentalis	White Cedar	32						5					Native	N/A		563376.6087	4823077.1895	Tree not present. Removed since previous NRSI survey.
348	Thuja occidentalis	White Cedar	28											Native	N/A		563517.5017	4823214.3147	dead
349	Thuja occidentalis	White Cedar	32						6					Native	N/A		563530.0140	4823225.4592	dead
355	Thuja occidentalis	White Cedar	48											Native	N/A		563609.6207	4823311.2965	Tree not present. Removed since previous NRSI survey.
357	Ulmus americana	White Elm	13						6					Native	N/A		563625.4857	4823312.4179	dead
358	Ulmus americana	White Elm	12						3					Native	N/A		563621.9067	4823311.6855	dead
360	Ulmus americana	White Elm	12						8					Native	N/A		563628.2240	4823309.7201	dead
366	Ulmus americana	White Elm	145						10					Native	N/A		563632.3933	4823310.9801	dead

Tree Assessment Criteria

1 DBH (cm): Diameter at breast height, 1.4 m above ground, measured in centimetres.

- 2 Crown Reserve (m): Crown diameter (tree's canopy) measured at intervals of 1, 3, 5, 7.5, 10, 15 metres
- 3 Height (m): Height of tree from ground to top of crown.
- <u>Structural Condition</u>: Related to defects in a tree's structure, (i.e., lean, codominant trunks).
 High No structural defects, well-developed crown.
 Medium Presence of major structural defects.
 Low Presence of major structural defects including drastic leans and imminent branch and/or trunk failure.
- 5 <u>Biological Health</u>: Related to presence and extent of disease/disease symptoms and the vigour of the tree. High - No disease/disease symptoms present, and moderate to high vigour. Medium - Presence of minor disease/disease symptoms, and/or moderate vigour. Low - Presence of major diseases/disease symptoms, (i.e., extensive crown dieback), and/or severely poor vigour.

6. <u>Preservation Priority</u>: A rating of each tree's projected survival related to existing conditions.

High - High to moderate biological health, and well developed crown. Well suited as a shade tree or screen planting. Will survive existing conditions indefinitely. Medium - One or more moderate to severe defects in biological health and/or structural condition. Marginally suited as a shade tree or screen planting. Can survive at least 3 - 5 years under existing conditions.

eoum - One or more moderate to severe detects in biological nearn and/or structural condition, marginally suited as a snade tree or screen planting. Can survive at least 3 - 5 years under existing condition This category also includes stock planted within past 2 years that is not yet established.

Low - Low biological health and/or severely damaged/defective structural condition, and/or unsuitable for urban uses. If biologically defective, survival for more than 1-3 years under existing conditions is unlikely.

7 Native Status:

Native – Native to Ontario

Introduced – Not native to Ontario

Genus - Unable to identify species level due to lack of key characteristics at the time of survey.

Source: NHIC (Natural Heritage Information Centre). 2009. Ontario Vascular Plant Species List. Biodiversity Explorer Online Database. Ontario Ministry of Natural Resources.

8. Tree Action:

Preserve - Trees that have a dripline that is substantially outside the limits of disturbance (less than 30% of the crown reserve will be impacted) and having moderate to high Preservation Priority. Protection of the entire root zone of the tree is desirable. Injure - Impacts due to grading and/or construction may encreach into more than 30% of crown reserve and cause significant damage within the root zone; preserve and protect with fencing as far as possible from the tree trunk; monitor during and following construction. Remove - Any tree for which at least 30% of the dripline is within the limits of disturbance, has low biological health, and/or severe structural defects, and is not likely to survive more than 1-3 years, and/or will not survive proposed development. NA - Not applicable. During the 2016 D&A arborist assessment the tree was either dead or not present, removed since NRSI survey.

9. Compensation Required:

Yes; 1:1 ratio or \$500 per tree removed - Yes, compensation is required for this tree removal. A 1:1 ratio is required as per City of Guelph Tree By-Law (2010) 19058. No - Species is exempted from compensation due to being an invasive exotic as per City of Guelph Tree By-Law (2010) 19058.

Natural Resources Solutions Inc. (2013)	Stantec (2006)	NHIC (2015)	OMNRF (Guelph District) SAR Records (2015)	Atlas of the Mammals of Ontario (Dobbyn 1994) OBBA 2001-2005 (Cadman et al. 2007)	Ontario Reptile and Amphibian Atlas (Ontario Nature 2015)	Ontario Butterfly Atlas Online (Toronto Entomologists' Association 2015)	City of Guelph Municipal List – Wildlife SAR (2015)	Clythe Creek Subwatershed Overview (Ecologistics Ltd. and Blackport and Associates, 1998)	Common Name	Scientific Name	COSEWIC (2013)	OMNR F (2014)	GRANK (Nature Serve, 2014)	Srank (OMNRF , 2013 Update)	BCR 13 Priority Landbir d Sp. (OPIF, 2008)	Wellingto n County (D&A 2009) (<i>i.e.</i> local rarity only)	Area Sensitivity (OMNR, 2000)
Insect	s:	1							Painted Skimmer	Libellula semifasciata			05	S2	n/a	Х	2/2
						1			Common Sootywing	Pholisora catullus			G5 G5	S3	n/a n/a	X	n/a n/a
						1			Little Glassywing	Pompeius verna			G5	S4	n/a	X	n/a
						1			Delaware Skipper	Anatrytone logan			G5	S4	n/a	X	n/a
						1			Dion Skipper	Euphyes dion			G4	S3	n/a	X	n/a
						1			Black Dash	Euphyes conspicua			G4	\$3	n/a	X	n/a
						1			Giant Swallowtail	Papilio cresphontes			G5	\$3	n/a	X	n/a
						1	1		West Virginia White	Pieris virginiensis		SC	G3G4	\$3	n/a	X	n/a
1									Cabbage White	Pieris rapae			G5	SNA	n/a	Λ	n/a
						1			Hickory Hairstreak	Satyrium caryaevorum			G4	\$3	n/a	Х	n/a
1									Mourning Cloak	Nymphalis antiopa			G5	S 5	n/a		n/a
1									Red Admiral	Vanessa atalanta			G5	S 5	n/a		n/a
1						1	1		Monarch	Danaus plexippus	SC	SC	G5	S2N,S4B	n/a	Х	n/a
Amph	ibians:																
					1				Mudpuppy	Necturus maculosus	NAR	NAR	G5	S4	n/a	Х	
					1				Red-spotted Newt	Notophthalmus viridescens viridescens			G5T5	S5	n/a	Х	
					1		1	1	Jefferson Salamander	Ambystoma jeffersonianum	END	END	G4	\$2	n/a	Х	
					1				Blue-spotted Salamander	Ambystoma laterale			G5	S4	n/a	Х	
					1				Four-toed Salamander	Hemidactylium scutatum	NAR	NAR	G5	S4	n/a	Х	
					1				Western Chorus Frog (Great Lakes/St.		TUD		05		,	X	
					1				Lawrence - Canadian Shield Pop.)	Pseudacris triseriata	THR	NAR	<u>G5</u>	S3 S4	n/a	X	
					1				American Bullfrog	Lithobates catesbeianus			<u>G5</u>	S4 S4	n/a	X	AS
Reptil	051				I				Pickerel Frog	Lithobates palustris	NAR	NAR	G5	34	n/a	X	
nepul			1		1		1		Snapping Turtle	Chelydra serpentina	SC	SC	G5	S3	n/a		
					1		1		11 8					S3		v	
		1			1				Blanding's Turtle Northern Map Turtle	Emydoidea blandingii Graptemys geographica	THR SC	THR SC	G4 G5	S3	n/a n/a	X X	AS
		1	1		1		1		Eastern Milksnake	Lampropeltis t. triangulum	SC	SC	G5	S3	n/a n/a	X	AS
					1		· ·		Smooth Greensnake	Opheodrys vernalis			G5	S4	n/a n/a	X	
					1				Northern Watersnake	Nerodia sipedon sipedon	NAR	NAR	G5T5	\$5	n/a	X	
					1				DeKay's Brownsnake	Storeria dekayi	NAR	NAR	G5	\$5 \$5	n/a	X	
					1				Northern Red-bellied Snake	Storeria o. occipitomaculata			G5	S5	n/a	X	
		1			1		1		Northern Ribbonsnake	Thamnophis sauritus septentrionalis	SC	SC	G5	\$3 \$3	n/a	X	
Birds:								 			00	50			1/4	~	
								1	Northern Bobwhite	Colinus virginianus	END	END	G5	S1	PLS	Х	
				1			1	1	Least Bittern	Ixobrychus exilis	THR	THR	G5	S4B		X	AS
				1			1		Bald Eagle	Haliaeetus leucocephalus	NAR	SC	G4	S2N,S4B	PLS	X	AS
							1	1	Red-shouldered Hawk	Buteo lineatus	NAR	NAR	G5	S4B	PLS	X	AS
						+	1										
				1			1		Common Nighthawk	Chordeiles minor	THR	SC	G5	S4B		Х	

Natural Resources Solutions Inc. (2013)	Stantec (2006)	NHIC (2015)	OMNRF (Guelph District) SAR Records (2015)	OBBA 2001-2005 (Cadman et al. 2007)	Atlas of the Mammals of Ontario (Dobbyn 1994)	Ontario Reptile and Amphibian Atlas (Ontario Nature 2015)	Ontario Butterfly Atlas Online (Toronto Entomologists' Association 2015)	City of Guelph Municipal List – Wildlife SAR (2015)	Clythe Creek Subwatershed Overview (Ecologistics Ltd. and Blackport and Associates,1998)	Common Name	Scientific Name	COSEWIC (2013)	OMNR F (2014)	GRANK (Nature Serve, 2014)	Srank (OMNRF , 2013 Update)	BCR 13 Priority Landbir d Sp. (OPIF, 2008)	Wellingto n County (D&A 2009) (<i>i.e.</i> local rarity only)	Area Sensitivity (OMNR, 2000)
1										Belted Kingfisher	Megaceryle alcyon			G5	S4B	PLS		
				1				1		Red-headed Woodpecker	Melanerpes erythrocephalus	THR	SC	G5	S4B	PLS	Х	
				1				1		Eastern Wood-Pewee	Contopus virens	SC	SC	G5	S4B	PLS		
1										Eastern Kingbird	Tyrannus tyrannus			G5	S4B	PLS		
				1				1		Bank Swallow	Riparia riparia	THR	THR	G5	S4B	PLS		
				1				1		Barn Swallow	Hirundo rustica	THR	THR	G5	S4B			
				1				1		Wood Thrush	Hylocichla mustelina	THR	SC	G5	S4B	PLS		
								1		Golden-winged Warbler	Vermivora chrysoptera	THR	SC	G4	S4B	PLS	Х	
1										American Redstart	Setophaga ruticilla			G5	S5B			AS
								1		Canada Warbler	Cardellina canadensis	THR	SC	G5	S4B	PLS	Х	AS
				1				1		Yellow-breasted Chat	Icteria virens	END	END	G5	S2B	PLS	Х	
				1						Grasshopper Sparrow	Ammodramus savannarum	SC		G5	S4B	PLS	Х	AS
									1	Henslow's Sparrow	Ammodramus henslowii	END	END	G4	SHB	PLS	Х	AS
1	1									Dark-eyed Junco	Junco hyemalis			G5	S5B		Х	
	1									Northern Cardinal	Cardinalis cardinalis			G5	S5			
				1				1		Bobolink	Dolichonyx oryzivorus	THR	THR	G5	S4B	PLS		AS
				1				1		Eastern Meadowlark	Sturnella magna	THR	THR	G5	S4B	PLS		AS
Mamn	nals:																	
					1				1	Smoky Shrew	Sorex fumeus			G5	S5	n/a		
					1					Water Shrew	Sorex palustris			G5	S5	n/a	Х	
					1					Hairy-tailed Mole	Parascalops breweri			G5	S4	n/a	Х	
					1					Star-nosed Mole	Condylura cristata			G5	S5	n/a		
					1			1		Small-footed Bat	Myotis leibii		END	G3	S2S3	n/a	Х	
					1			1		Little Brown Myotis	Myotis lucifugus	END	END	G5	S4	n/a		
					1			1		Northern Myotis	Myotis septentrionalis	END	END	G4	S3	n/a	Х	
					1					Silver-haired Bat	Lasionycteris noctivagans			G5	S4	n/a		
					1					Red Bat	Lasiurus borealis			G5	S4	n/a		
					1					Hoary Bat	Lasiurus cinereus			G5	S4	n/a		
					1					Snowshoe Hare	Lepus americanus			G5	S5	n/a	Х	
					1					Northern Flying Squirrel	Glaucomys sabrinus			G5	S5	n/a	Х	AS
					1					Southern Flying Squirrel	Glaucomys volans	SC	NAR	G5	S4	n/a	Х	AS
					1					Deer Mouse	Peromyscus maniculatus			G5	S5	n/a		
					1					Woodland Vole	Microtus pinetorum	SC	SC	G5	S3?	n/a	Х	
					1					Woodland Jumping Mouse	Napaeozapus insignis			G5	S5	n/a	Х	
					1					Long-tailed Weasel	Mustela frenata			G5	S4	n/a	Х	

LEGEND:

COSEWIC: THR - Threatened; SC - Special Concern; NAR - assessed and deemed to be not at risk; --- = not assessed as population secure OMNRF: THR - Threatened; SC - Special Concern; NAR - assessed and deemed to be not at risk; --- = not assessed as population secure Global Granks: G3 - vulnerable; G4 - apparently secure; G5 - secure; OPIF: PLS - Priority Landbird Species Wellington County: X - rare Area Sensitivity: AS = Area Sensitive species

Provincial Sranks: S3 - vulnerable; S4 - apparently secure; S5 - secure; SNA - non-native exotic; B – breeding; N -; SH - Possibly Extirpated (Historical)

Significant Wildlife Habitat (SWH) Type	ELC Categories indicated for SWH Type	SWH present on site or within 120 m?	Rationale (Habitat Presence or Absence)	Additional field studies required?
Seasor	nal Concentration Areas of An	imals		
Waterfowl Stopover and Staging Areas (Terrestrial)	CUM1; CUT1; plus evidence of spring (Mar – May) flooding; does not include AGR	No	No suitable habitats were detected on site or in adjacent lands during field visits.	No
Waterfowl Stopover and Staging Areas (Aquatic)	MAS1; MAS2; MAS3; SAS1; SAM1; SAF1; SWD1; SWD2; SWD3; SWD4; SWD5; SWD6; SWD7	No	Habitat available in two main ponds and adjacent Eramosa River; however, indicator species diversity and numbers unlikely to exceed significance thresholds.	No
Shorebird Migratory Stopover Area	BB01; BB02; BBS1; BBS3; BBT1; BBT2; SD01; SDS2; SDT1; MAM1; MAM2; MAM3; MAM4; MAM5	No	No suitable habitats were detected on site or in adjacent lands during field visits.	No
Raptor Wintering Area	One of FOD, FOM, FOC and one of CUM, CUT, CUS, CUW (20+ ha); least disturbed sites 15+ ha with adjacent woodlands; BAEA: FOD, FOM, FOC, SWD or SWC on shoreline areas adjacent to large rivers or adjacent to lakes with open water	No	Open areas have suitable wintering habitats for raptors; however, they do not meet size thresholds for both open areas and adjacent woodlands. Bald Eagle may winter along adjacent Eramosa River but would not be present at the site as the main ponds would freeze in winter.	No
Bat Hibernacula	BBBA/TRBA only; CCR1; CCR2; CCA1; CCA2; does not include buildings	No	No suitable habitats were found on site or in adjacent lands.	No
Bat Maternity Colonies	BBBA/SHBA only; all FOD, FOM, SWD, SWM; 10+ ha AND 25+ cm dbh	No	No FOD or FOM habitats of greater than 10 hectares are present on site or in adjacent lands.	No
Bat Migratory Stopover Area	No specific ELC types	No	No landforms present to concentrate migrant bats although they may move along the Eramosa River; note that MNRF has not yet determined thresholds/criteria for this category.	No
Turtle Wintering Areas	SNTU/PATU: SW, MA, OA, SA; FEO and BOO; NMTU: open water areas (e.g. deeper rivers, streams) and lakes with current can also be used as over- wintering habitat.	Candidate	Open waters of the two main ponds and the adjacent Eramosa River could serve as over-wintering habitat for Painted Turtle and Snapping Turtle (both confirmed from the site).	No

Significant Wildlife Habitat (SWH) Type	ELC Categories indicated for SWH Type	SWH present on site or within 120 m?	Rationale (Habitat Presence or Absence)	Additional field studies required?
Reptile Hibernaculum	Snakes: any ecosite except very wet ones; talus, rock barren, crevice, cave, and alvar site may be directly related; FLSK: FOD, FOM and FOC1/FOC3	No	No suitable habitats were detected on site or in adjacent lands during field visits.	No
Colonially - Nesting Bird Breeding Habitat (Bank and Cliff)	CUM1, CUS1, BLS1, CLO1, CLT1; CUT1; BLO1; BLT1; CLS1	No	No suitable habitats were detected on site or in adjacent lands during field visits.	No
Colonially - Nesting Bird Breeding Habitat (Tree/Shrubs)	SWM2; SWM3; SWM5; SWM6; SWD1; SWD2; SWD3; SWD4; SWD5; SWD6; SWD7; FET1	No	No suitable habitats were detected on site or in adjacent lands during field visits.	No
Colonially - Nesting Bird Breeding Habitat (Ground)	MAM1 – 6; MAS1 – 3; CUM; CUS; CUT	No	No suitable habitats were detected on site or in adjacent lands during field visits.	No
Migratory Butterfly Stopover Areas	Field: CUM, CUS, CUT; Forest: FOC, FOD, FOM, CUT; 10+ ha, within 5 km of Lake Ontario	No	No combination of field and forest of sufficient size found within site and adjacent lands; site not within 5 km of Lake Ontario.	No
Landbird Migratory Stopover Areas	FOC, FOM, FOD, SWC, SWM, SWD; 10+ ha, within 5 km of Lake Ontario	No	No woodlands greater than 10 ha within site or adjacent lands; site not within 5 km of Lake Ontario.	No
Deer Yarding Areas	FOM, FOC, SWM, SWC; CUP2, CUP3, FOD3, CUT; identified by MNRF	No	No suitable habitats were detected on site or in adjacent lands during field visits. None have been identified in area by MNRF.	No
Deer Winter Congregation Areas	FOC; FOM; FOD; SWC; SWM; SWD; typically 100+ ha; identified by MNRF	No	No suitable habitats were detected on site or in adjacent lands during field visits. None have been identified in area by MNRF.	No
Rare V	egetation Communities			
Cliffs and Talus Slopes	TAO; TAS; TAT; CLO; CLS; CLT	No	None identified on site or in adjacent lands.	No
Sand Barren	SBO1; SBS1; SBT1	No	None identified on site or in adjacent lands.	No
Alvar	ALO1; ALS1; ALT1; FOC1; FOC2; CUM2; CUS2; CUT2-1; CUW2; 0.5+ ha	No	None identified on site or in adjacent lands.	No
Old Growth Forest	FOD; FOC; FOM; SWC; SWD; SWM; 30+ ha with 10+ ha IF (100m buffer)	No	None identified on site or in adjacent lands.	No
Savannah	TPS1; TPS2; TPW1; TPW2; CUS2	No	None identified on site or in adjacent lands.	No
Tallgrass Prairie	TPO1; TPO2	No	None identified on site or in adjacent lands.	No

Significant Wild Habitat (SWH) T		ELC Categories indicated for SWH Type	SWH present on site or within 120 m?	Rationale (Habitat Presence or Absence)	Additional field studies required?
Other Rare Ve Com	egetation munities	S1, S2, or S3 vegetation communities	No	None identified on site or in adjacent lands.	No
	Specia	lized Habitat for Wildlife			
Waterfowl Nes	ting Area	MAS1; MAS2; MAS3; SAS1; SAM1; SAF1; MAM1; MAM2; MAM3; MAM4; MAM5; MAM6; SWT1; SWT2; SWD1; SWD2; SWD3; SWD4	No	Potential habitat found within site; no nesting waterfowl were detected during 2016 breeding bird surveys. If present, the number and diversity of indicator species not likely to exceed significance thresholds.	No
Bald Eagle and Osprey Foraging, and Perching	.	FOD; FOM; FOC; SWD; SWM; SWC; adjacent to riparian areas (rivers, lakes, ponds and wetlands)	No	No suitable habitats were detected on site or in adjacent lands during field visits; likely habitat along Eramosa River. No Bald Eagles or Ospreys or their nests were detected during the breeding bird surveys in 2016.	No
Woodland Rapto	r Nesting Habitat	All forested ELC ecosites; also SWC, SWM, SWD, CUP3; 30+ ha with 10+ ha IF (200m buffer)	No	No forest sites of adequate size for breeding woodland raptors are located within the sites or their adjacent lands.	No
Turtle Nesti	ing Areas	MAM1; MAM2; MAM3; MAM4; MAM5; MAM6; SAS1; SAM1; SAF1; BOO1; FEO1	Candidate	Potential nesting areas occur along the Eramosa River and in open areas with sand and gravel. No suitable habitat was observed along Clythe Creek.	No
Seeps and	d Springs	Any forested ecosite within headwater area of stream	No	None identified on sites or in adjacent lands during field investigations.	No
Amphibian Breedin W)	g Habitat oodland)	FOC; FOM; FOD; SWC; SWM; SWD	No	No suitable habitats were detected on sites or in adjacent lands during field visits.	No
Amphibian Breeding Habitat (Wetlands)		SW, MA, FE, BO, OA, SA; typically 120+ from woodlands (except AMBU)	No	The two main ponds serve as breeding habitat for several common and widespread amphibian species; however, the number and diversity detected during the 2016 nocturnal amphibian surveys did not meet significance thresholds.	No
Woodland Area-Sensitive Rind		FOC, FOM, FOD, SWC, SWM, SWD; mature (60+ years), 30+ ha; IF 200+ m from edge	No	No large enough woodlands (30+ ha) with interior forest (greater than 200 m from edge) and 60+ years old are present on sites or in adjacent lands.	No
	Habita	ts for Species of Conservation	Concern (not	including END or THR species)	

Significant Wildlife Habitat (SWH) Type	ELC Categories indicated for SWH Type	SWH present on site or within 120 m?	Rationale (Habitat Presence or Absence)	Additional field studies required?
Marsh Breeding Bird Habitat	MAM1; MAM2; MAM3; MAM4; MAM5; MAM6; SAS1; SAM1; SAF1; FEO1; BOO1; GRHE – all SW, MA, CUM1 sites	No	No suitable habitats were detected on site or in adjacent lands during field visits. No indicator species were detected during 2016 breeding bird surveys.	No
Open Country Bird Breeding Habitat	CUM1; CUM2; 30+ ha; not Class 1 or 2 AGR or actively used for farming in last 5 years	No	No CUM1 or CUM2 habitat of greater than 30 hectares in size found in study area or adjacent lands. No indicator species were found during BBS in 2016.	No
Shrub/Early Successional Bird Breeding Habitat	CUT1; CUT2; CUS1; CUS2; CUW1; CUW2; 10+ ha; not Class 1 or 2 AGR or actively used for farming in last 5 years	No	No suitable ELC categories of sufficient size exist within the study area and adjacent lands; only one indicator species (Willow Flycatcher) found during BBS in 2016.	No
Terrestrial Crayfish	MAM1; MAM2; MAM3; MAM4; MAM5; MAM6; MAS1; MAS2; MAS3; SWT; SWD; SWM; CUM1 with inclusions of above MAM or swamp ecosites can be used by crayfish	No	No suitable habitats were detected on site or in adjacent lands during field visits	No
Special Concern and Rare Wildlife Species	SC and S1, S2, S3, and SH species	Candidate	Only one Special Concern species was found during the 2016 field investigations: Snapping Turtle. No S1 to S3 species of fauna were observed in 2016. Monarch (SC) may occur in non-significant numbers during migration and may also breed as Common Milkweed is present. No suitable habitat exists for other SC species known from the City of Hamilton (e.g., Common Nighthawk, Eastern Wood-Pewee, Canada Warbler).	Νο
Anima	I Movement Corridors			
Amphibian Movement Corridors	All ecosites associated with water	Candidate	Small numbers of amphibians were detected in the two main ponds in 2016; amphibian movement would not be to the north as no habitat exists in that direction. Eramosa River, immediately to the south, likely serves as an amphibian movement corridor.	Νο
Deer Movement Corridors	All forested ecosites; Stratum II Deer Wintering Areas have potential to contain corridors.	No	Such corridors are within Stratum II yarding areas, typically following riparian zones, woodlots, and ravines/ridges, and are unbroken by roads and	No

Significant Wildlife Habitat (SWH) Type	ELC Categories indicated for SWH Type	SWH present on site or within 120 m?	Rationale (Habitat Presence or Absence)	Additional field studies required?
			residential areas. Therefore, no deer movement corridors occur on the sites or in adjacent lands.	

				Conserva	ation Status						
		National		Provincial		Lo	cal			Breeding Evidence (OBBA 2001)	
Common Name	Scientific Name	COSEWIC Designation (COSEWIC 2015)	OMNRF Designation (OMNRF 2016)	Srank (NHIC 2016)	Checklist of Ontario Butterflies (Jones 2012)	Regional Municipality of Waterloo Herpetofauna, Mammals & Birds - (RMW 1985a,b; 1996	Wellington County (local rarity only) (D&A 2009)	Covered by MBCA (1994) (Government of Canada 1994)	Area Sensitivity (OMNR, 2000)		
Butterflies:			•								
Least Skipper	Ancyloxypha numitor			S5	C, L, Re			n/a	n/a	n/a	
European Skipper	Thymelicus lineola			SNA	C, Re			n/a	n/a	n/a	
Tawny-edged Skipper	Polites themistocles			S5	C, Re			n/a	n/a	n/a	
Eastern Tiger Swallowtail	Papilio glaucus			S5	C, Re			n/a	n/a	n/a	
Black Swallowtail	Papilio polyxenes			S5	C, Re			n/a	n/a	n/a	
Cabbage White	Pieris rapae			SNA	C, E, Re			n/a	n/a	n/a	
Spring Azure	Celastrina lucia			S5	C, Re			n/a	n/a	n/a	
Pearl Crescent	Phyciodes tharos			S4	C, Re			n/a	n/a	n/a	
Mourning Cloak	Nymphalis antiopa			S5	C, Re			n/a	n/a	n/a	
Painted Lady	Vanessa cardui			S5	R-C, BI			n/a	n/a	n/a	
Red Admiral	Vanessa atalanta			S5	U-C, BI			n/a	n/a	n/a	
Common Ringlet	Coenonympha tullia			S5	C, Re			n/a	n/a	n/a	
Monarch	Danaus plexippus	SC	SC	S2	C, BI		х	n/a	n/a	n/a	Two seen in northeas this area so potentiall
Amphibians:			-								
American Toad	Anaxyrus americanus			S5	n/a			n/a	n/a	n/a	Recorded in small nu 9
Spring Peeper	Pseudacris crucifer			S5	n/a			n/a	n/a	n/a	Recorded in small nu May 9 and survey sta
Northern Leopard Frog	Lithobates pipiens			S5	n/a			n/a	n/a	n/a	Observed in small nu
Green Frog	Lithobates clamitans			S5	n/a			n/a	n/a	n/a	Recorded in small nu on June 21 only
Reptiles:						•				•	
Midland Painted Turtle	Chrysemys picta marginata			S4	n/a			n/a	n/a	n/a	
				S3							One seen on June 17
Snapping Turtle	Chelydra serpentina	SC	SC		n/a			n/a	n/a	n/a	cm.
Pond Slider	Trachemys scripta			SNA	n/a			n/a	n/a	n/a	
Eastern Gartersnake	Thamnophis sirtalis sirtalis			S5	n/a			n/a	n/a	n/a	
Birds:		1	I	1	I		1			I	
Canada Goose	Branta canadensis			0114	n/a			Y		PROBABLE	
Mute Swan	Cygnus olor			SNA	n/a			Y		POSSIBLE	
Mallard	Anas platyrhynchos			S5	n/a			Y		PROBABLE	
Ring-necked Duck	Aythya collaris			S5	n/a	р	Х	Y		М	One female seen on I
Great Blue Heron	Ardea herodias			S4	n/a	U	Х	Y		Х	Seen flying over site
Green Heron	Butorides virescens			S4	n/a	U		Y		х	Seen flying ove site o
Turkey Vulture	Cathartes aura			S5	n/a	U	Х	N		х	Seen flying over site
Osprey	Pandion haliaetus			S5	n/a	р	х	Ν		х	Seen foraging over be nesting locally.
Sharp-shinned Hawk	Accipiter striatus	NAR	NAR	S5	n/a	R		N	AS	М	One bird seen on Ma
Red-tailed Hawk	Buteo jamaicensis	NAR	NAR	S5	n/a			N		PROBABLE	One pair present.
Killdeer	Charadrius vociferus			S5	n/a			Y		PROBABLE	

Notes
ast field on June 17 only; Common Milkweed is present in ally breeding.
numbers (1 to 3) from survey station 2 on April 21 and May
numbers (two or less) from survey station 2 on April 21 and station 3 on May 9
numbers during diurnal surveys
numbers in four areas outside of the three survey stations
17 in small easternmost pond; carapace approximately 15
n May 20 only.
e only; no colonies detected.
e only.
e only.
both main ponds; no evidence of nest on-site but is likely
lay 3 was migrating over site.

				Conserva	ation Status						
		National		Provincial		Lo	cal				
Common Name	Scientific Name	COSEWIC Designation (COSEWIC 2015)	OMNRF Designation (OMNRF 2016)	Srank (NHIC 2016)	Checklist of Ontario Butterflies (Jones 2012)	Regional Municipality of Waterloo Herpetofauna, Mammals & Birds - (RMW 1985a,b; 1996	Wellington County (local rarity only) (D&A 2009)	Covered by MBCA (1994) (Government of Canada 1994)	Area Sensitivity (OMNR, 2000)	Breeding Evidence (OBBA 2001)	
Spotted Sandpiper	Actitis macularius			S5	n/a			Y		PROBABLE	
American Woodcock	Scolopax minor			S5	n/a			Y		POSSIBLE	Detected during noct
Herring Gull	Larus argentatus			S5	n/a		х	Y		х	Seen flying over site
Rock Pigeon	Patagioena livia			SNA	n/a			Ν		х	
Mourning Dove	Zenaida macroura			S5	n/a			Y		PROBABLE	
Chimney Swift	Chaetura pelagica	THR	THR	S4	n/a			Y		POSSIBLE	Up to three birds see June 17; no suitable locally.
Belted Kingfisher	Megaceryle alcyon			S4	n/a	U		Y		PROBABLE	One pair present alor
Downy Woodpecker	Picoides pubescens			S5	n/a			Y		POSSIBLE	
Northern Flicker	Colaptes auratus			S4	n/a			Y		PROBABLE	
Willow Flycatcher	Empidonax traillii			S5	n/a	U		Y		PROBABLE	
Great Crested Flycatcher	Myiarchus crinitus			S4	n/a			Y		POSSIBLE	
Eastern Kingbird	Tyrannus tyrannus			S4	n/a			Y		PROBABLE	Three pairs present.
Warbling Vireo	Vireo gilvus			S5	n/a	U		Y		PROBABLE	
Blue Jay	Cyanocitta cristata			S5	n/a			Ν		PROBABLE	
American Crow	Corvus brachyrhynchos			S5	n/a			N		PROBABLE	
Tree Swallow	Tachycineta bicolor			S4	n/a			Y		PROBABLE	
Northern Rough-winged Swallow	Stelgidopteryx serripennis			S4	n/a			Y		PROBABLE	
Barn Swallow	Hirundo rustica	THR	THR	S4	n/a			Y		PROBABLE	Up to eight birds seen suitable structures for
Black-capped Chickadee	Poecile atricapillus			S5	n/a			Y		PROBABLE	
House Wren	Troglodytes aedon			S5	n/a			Y		PROBABLE	
American Robin	Turdus migratorius			S5	n/a			Y		CONFIRMED	Fledged young obser
Gray Catbird	Dumetella carolinensis			S4	n/a			Y		PROBABLE	
European Starling	Sturnus vulgaris			SNA	n/a			N			Fledged young obser
Cedar Waxwing	Bombycilla cedrorum			S5	n/a			Y		PROBABLE	
Common Yellowthroat	Geothlypis trichas			S5	n/a			Y		PROBABLE	
Yellow Warbler	Setophaga petechia			S5	n/a			Y		PROBABLE	
Chipping Sparrow	Spizella passerina			S5	n/a			Y		PROBABLE	
Savannah Sparrow	Passerculus sandwichensis			S4	n/a			Y	AS	PROBABLE	Two pairs present alc
Song Sparrow	Melospiza melodia			S5	n/a			Y		CONFIRMED	Fledged young obser
Swamp Sparrow	, Melospiza georgiana			S5	n/a	U		Y		PROBABLE	
Northern Cardinal	Cardinalis cardinalis			S5	n/a			Y		CONFIRMED	Fledged young obser
Indigo Bunting	Passerina cyanea			S4	n/a			Y		PROBABLE	
Red-winged Blackbird	Agelaius phoeniceus			S4	n/a			N		PROBABLE	
Eastern Meadowlark	Sturnella magna	THR	THR	S4	n/a			Y	AS	PROBABLE	One pair present on b
Common Grackle	Quiscalus quiscula			S5	n/a			N		CONFIRMED	Fledged young obser
Brown-headed Cowbird	Molothrus ater			S4	n/a			N		CONFIRMED	Fledged young obser
Baltimore Oriole	Icterus galbula			S4	n/a			Y		PROBABLE	
American Goldfinch	Spinus tristis			S5	n/a			Y		PROBABLE	

Notes
xturnal amphibian survey.
e only; no colonies detected.
en foraging over the main ponds on May 20, June 3, and ensting sites (e.g. chimneys) detected but are present
ong Eramosa River and creek.
en foraging over baseball fields and northeast fields; no or nesting are present on site but they are available locally.
erved.
erved.
long south end of baseball fields.
erved.
erved.
both breeding bird surveys in northeast field.
erved.
erved.

Common Name				Conserva	tion Status						
		National Provincial				Lo	cal	0			
	Scientific Name	COSEWIC Designation (COSEWIC 2015)	OMNRF Designation (OMNRF 2016)	Srank (NHIC 2016)	Checklist of Ontario Butterflies (Jones 2012)	Regional Municipality of Waterloo Herpetofauna, Mammals & Birds - (RMW 1985a,b; 1996	Wellington County (local rarity only) (D&A 2009)	Covered by MBCA (1994) (Government of Canada 1994)	Area Sensitivity (OMNR, 2000)	Breeding Evidence (OBBA 2001)	
House Sparrow	Passer domesticus			SNA	n/a			N		PROBABLE	
Mammals:											
Gray Squirrel	Sciurus carolinensis			S5	n/a			n/a	n/a	n/a	
Beaver	Castor canadensis			S5	n/a			n/a	n/a	n/a	
Raccoon	Procyon lotor			S5	n/a			n/a	n/a	n/a	

WEATHER AND SURVEY TIMES:

Nocturnal amphibian survey 1 - April 21, 2016; 20:44 – 21:18; Cloudy, calm, 11 – 14 $^{\circ}\mathrm{C}$

Snake & turtle survey 1 - May 3, 2016; 10:00 - 15:00; clear to partly cloudy, calm, 9 - 14 $^\circ C$

Nocturnal amphibian survey 2 - May 9, 2016; 21:13 - 21:45; Partly cloudy, calm, 9 - 11 °C

Snake & turtle survey 2 - May 20, 2016; 10:30 - 15:30; partly cloudy, light north winds, 17 - 20 °C

Breeding bird survey (BBS) 1 - June 3, 2016; 06:15 - 09:45; clear, calm, 16 - 19 °C

Breeding bird survey (BBS) 2 - June 17, 2016; 06:30 - 10:00; clear, calm, 17 - 20 °C

Nocturnal amphibian survey 3 - June 21, 2016; 21:47 – 22:16; Partly cloudy, calm, 21 $^{\circ}\mathrm{C}$

LEGEND:

COSEWIC: THR - Threatened; SC - Special Concern; NAR - assessed and deemed to be not at risk; --- = not assessed as population secure OMNRF: THR - Threatened; SC - Special Concern; NAR - assessed and deemed to be not at risk; --- = not assessed as population secure

Provincial Sranks: S2 - imperiled; S3 - vulnerable; S4 - apparently secure; S5 - secure; SNA - non-native exotic

Area Sensitivity: AS = Area Sensitive species

OBBA 2001: X - species observed flying over site only and not considered a potential breeder; M - migrant only (not breeding)

Jones 20102 - C - common; L - local; R - rare; Re - resident; E - exotic (non-native, introduced); BI - migrant (does not winter)

RMW 1985/1996 - U - uncommon; R - rare; p - probable

D&A 2009: X - rare

REFERENCES:

COSEWIC (Committee on the Status of Endangered Wildlife in Canada). 2015. COSEWIC Species Assessments (detailed version), October 2015. http://www.cosewic.gc.ca/eng/sct0/rpt/ dsp_booklet_e.htm

Dougan & Associates. 2009. City of Guelph Natural Heritage Strategy. Phase 2: Terrestrial Inventory and Natural Heritage System (Volume 2 – Appendices). Final Report (March 2009).

Jones, C.D. (compiler) 2012. Checklist of Ontario Butterflies 2012. Available from the Hamilton Naturalists' Club at http://www.hamiltonnature.org

MBCA (Migratory Birds Convention Act). 1994. Available at: http://laws-lois.justice.gc.ca/eng/acts/M-7.01/

NHIC (Natural Heritage Information Centre). 2015. Srank Definition. http://nhic.mnr.gov.on.ca/MNR/nhic/glossary/srank.cfm

NHIC (Ontario Natural Heritage Information Centre). 2016. NHIC List of Ontario Birds. Ontario Natural Heritage Information Centre Home Page. Available at: http://nhic.mnr.gov.on.ca/MNR/nhic/ species/listout.cfm?el=ab OBBA (Ontario Breeding Bird Atlas). 2001. Guide for Participants. Atlas Management Board, Federation of Ontario Naturalists, Don Mills. 34pp.

OMNR (Ontario Ministry of Natural Resources). 2000. Significant Wildlife Habitat Technical Guide. 151 pp.

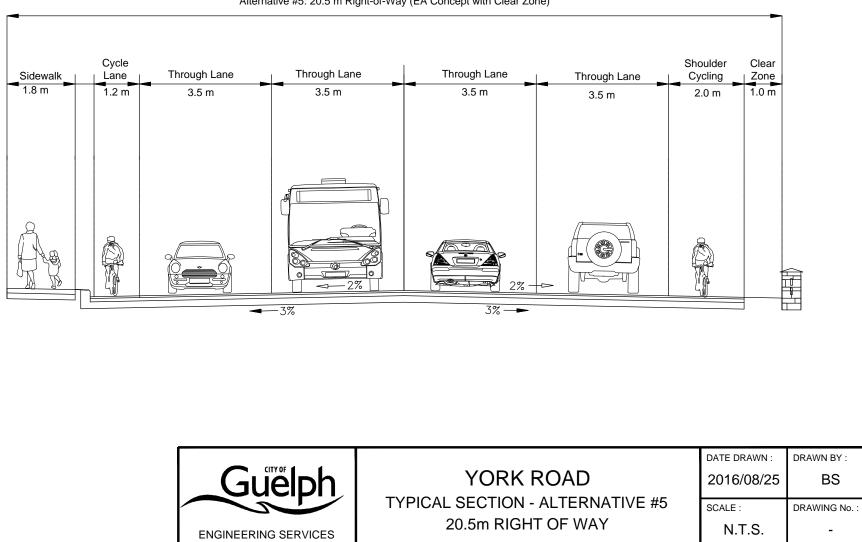
OMNRF (Ontario Ministry of Natural Resources and Forestry). 2016. Species at Risk in Ontario (SARO) List. Updated January, 2016. Available at: http://www.mnr.gov.on.ca/en/Business/Species/ 2ColumnSubPage/276722.html RMW (Regional Municipality of Waterloo). 1985a. Appendix 3: Reptiles and Amphibians in Environmentally Sensitive Policy Areas Technical Appendix. Approved by Council: 1986.

RMW (Regional Municipality of Waterloo). 1985b. Appendix 4: Mammals in Environmentally Sensitive Policy Areas Technical Appendix. Approved by Council: 1986.

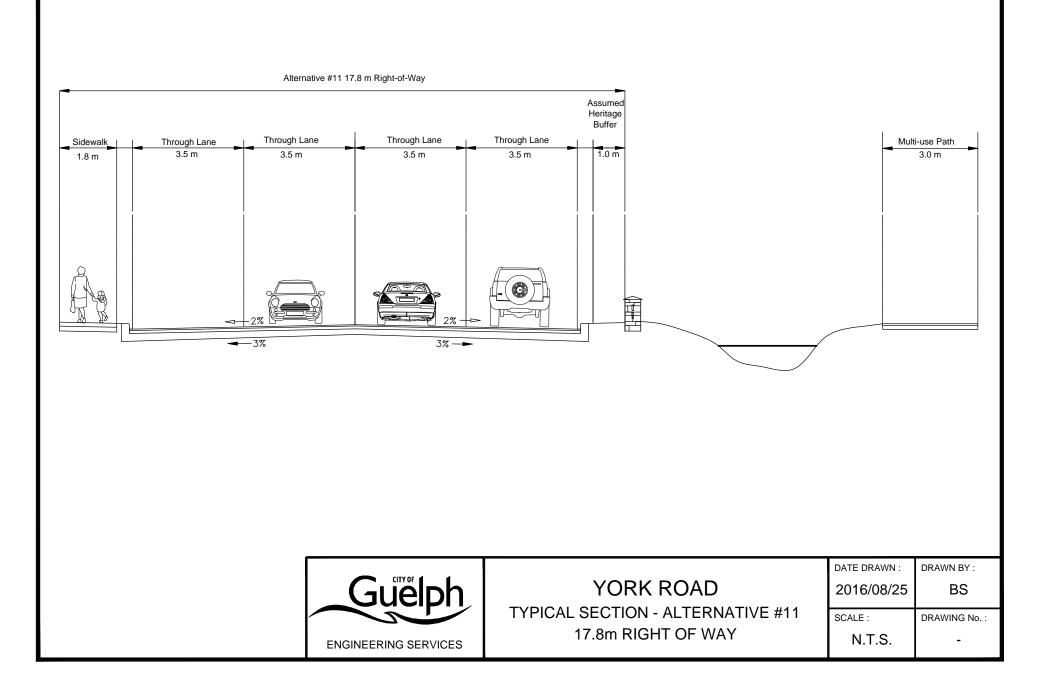
RMW (Regional Municipality of Waterloo). 1996. Revisions to Waterloo Region's Significant Species List: Breeding Birds Component. Report to Planning and Culture Committee PC-96-021. Approved by Council: April 25, 1996.

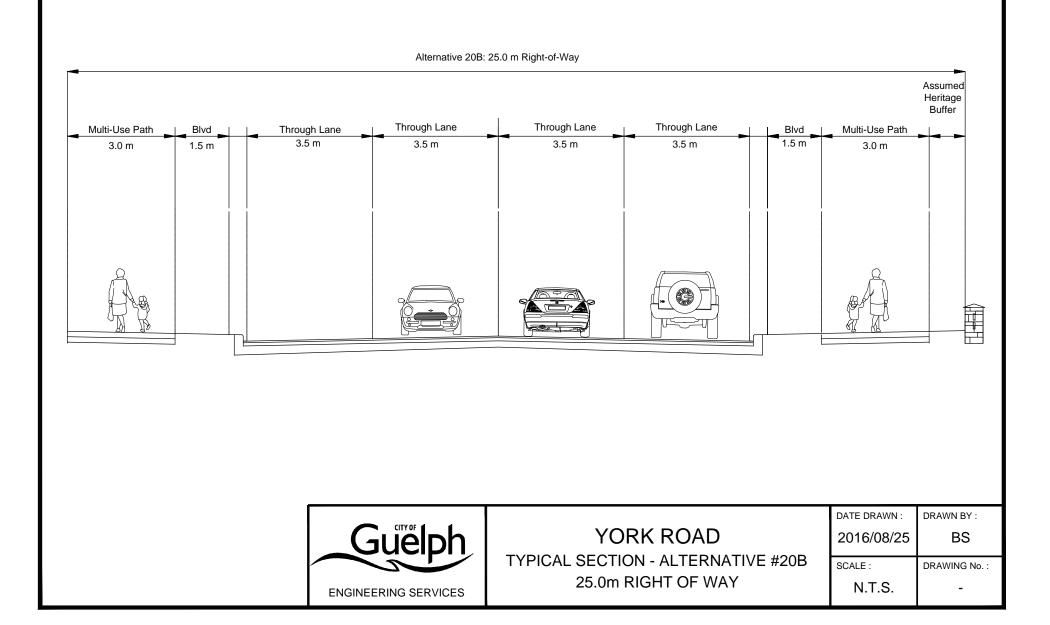
Notes	

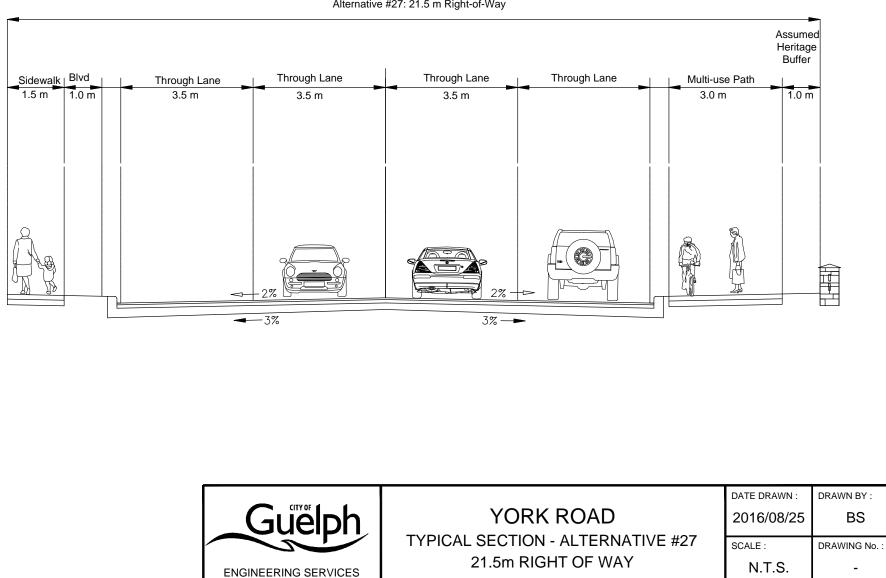
York Road Cross-Section Alternatives

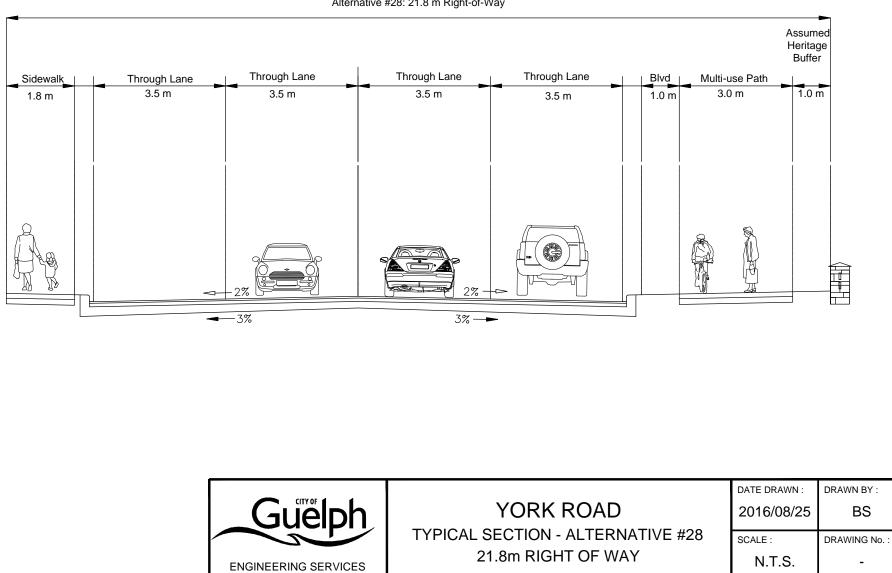

25-Aug-16

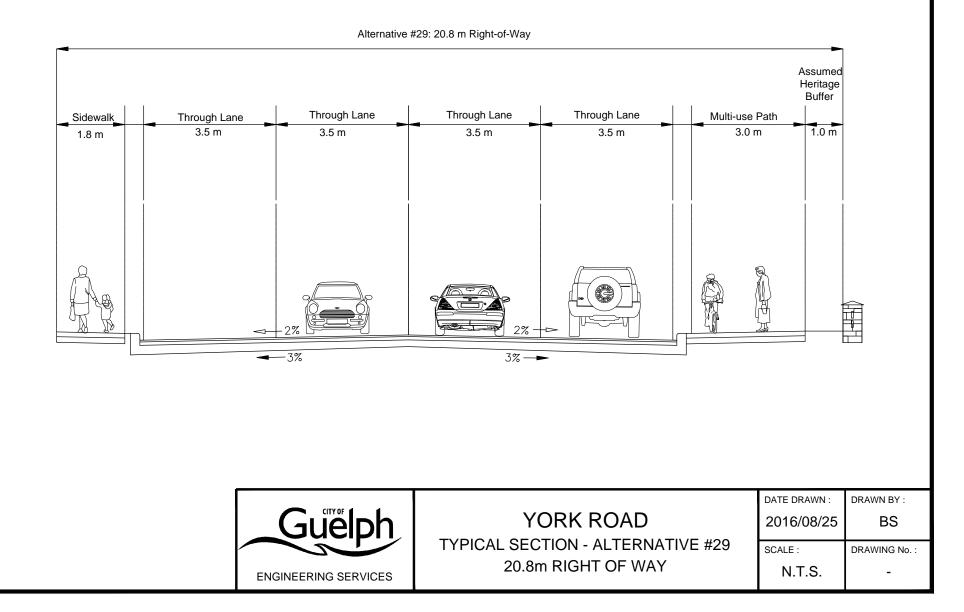
Alt # General Description		Inside Lane Width	Outside Lane Width	-	ne Width n)	Sidewalk	Width (m)		e Pathway m)	Curb (r	Width n)		nd Width m)		er Width, r Zone (m)	Heritage Buffer	Total Width
		(m)	(m)	North Side	South Side	North Side	South Side	North Side	South Side	North Side	South Side	North Side	South Side	North Side	South Side	(m)	VIGUI
1		3.5	4.0	1.5	1.5	1.5	1.5			0.5	0.5	1.0	1.0				24.00
2	Cidewalka and Cycla Lanas an	3.5	3.5	1.5	1.5	1.5	1.5			0.5	0.5	1.0	1.0				23.00
3	Sidewalks and Cycle Lanes on Both Sides	3.5	4.0	1.5	1.5	1.8	1.8			0.5	0.5						22.60
4	Doth Sides	3.5	3.5	1.5	1.5	1.8	1.8			0.5	0.5						21.60
5		3.5	3.5	1.2		1.8				0.5					3.0		20.50
6		3.5	4.3			1.5	1.5			0.5	0.5	1.0	1.0				21.60
7		3.5	4.3			1.8	1.8			0.5	0.5						20.20
8	Cidawalka Only	3.5	3.5			1.5	1.5			0.5	0.5	1.0	1.0				20.00
9	Sidewalks Only, with and without	3.5	3.5			1.8	1.8			0.5	0.5						18.60
10	Shared Use Lanes	3.5	3.5			1.5				0.5	0.5	1.0			0.5		18.00
11	Shared Use Lanes	3.5	3.5			1.8				0.5	0.5				0.5	0.5	17.80
12		3.5	3.5			1.5				0.5		1.0			3.0		20.00
13		3.5	3.5			1.8				0.5					3.0		19.30
14		3.5	3.5	1.5	1.5	1.5				0.5		1.0			1.5	1.0	22.50
15	Sidewalk on North Side, Cycle	3.5	3.5	1.5	1.5	1.8				0.5					1.5	1.0	21.80
16	Lanes on Both Sides	3.5	3.5	1.5	1.5	1.5				0.5	0.5	1.0			0.5	0.5	21.50
17		3.5	3.5	1.5	1.5	1.8				0.5	0.5				0.5	0.5	20.80
18	Multi Llee en Deth Cidee Mith	3.5	4.3					3.0	3.0	0.5	0.5	1.0	1.0			1.0	25.60
19	Multi-Use on Both Sides, With Boulevards	3.5	4.0					3.0	3.0	0.5	0.5	1.0	1.0			1.0	25.00
20	Boulevalus	3.5	3.5					3.0	3.0	0.5	0.5	1.0	1.0			1.0	24.00
21	Multi Llag en Dath Cidag	3.5	4.3					3.0	3.0	0.5	0.5					1.0	23.60
22	Multi-Use on Both Sides, Without Boulevards	3.5	4.0					3.0	3.0	0.5	0.5					1.0	23.00
23	Without Boulevalus	3.5	3.5					3.0	3.0	0.5	0.5					1.0	22.00
24	Sidewalk and Shared-Use	3.5	4.3/3.5			1.5			3.0	0.5	0.5	1.0	1.0			1.0	23.20
25	Lane on North Side,	3.5	4.3/3.5			1.5			3.0	0.5	0.5	1.0		I		1.0	22.20
26	Multi-Use on South Side	3.5	4.3/3.5			1.8			3.0	0.5	0.5			I		1.0	21.50
27	Olderselle en Nierth Old	3.5	3.5			1.5			3.0	0.5	0.5	1.0				1.0	21.50
28	Sidewalk on North Side, Multi-Use on South Side	3.5	3.5			1.8	1		3.0	0.5	0.5		1.0	1		1.0	21.80
29		3.5	3.5			1.8			3.0	0.5	0.5					1.0	20.80

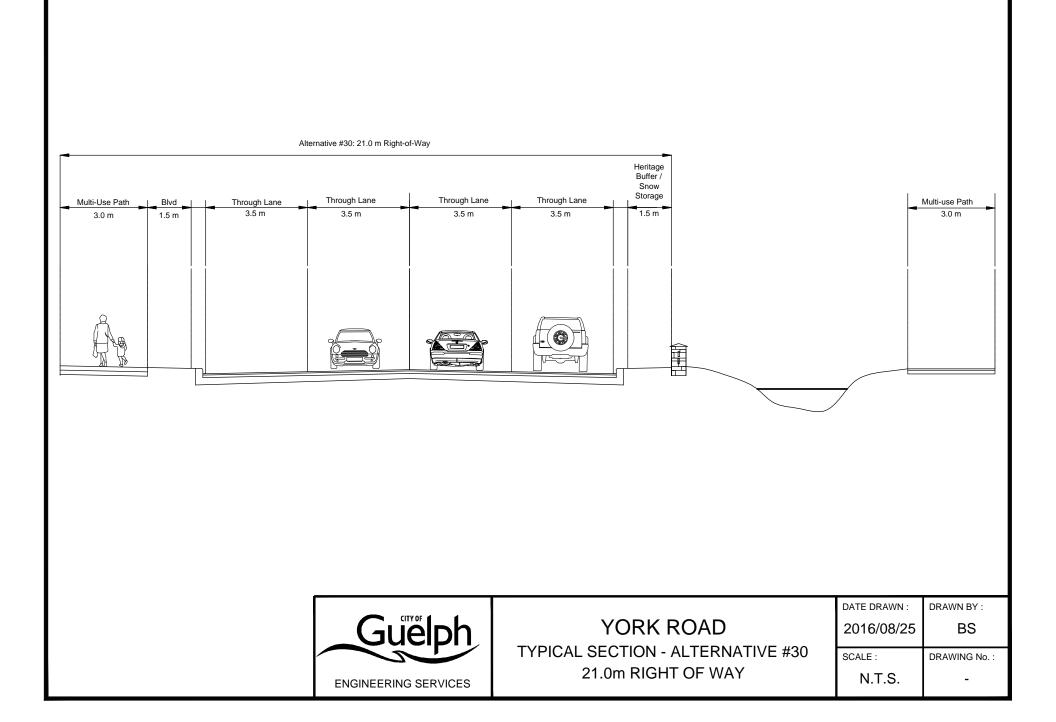

Notes:


- Profile will need to be reviewed in all instances to ensure roadway surface can be properly drained


- Storm sewer system will be required


Alternative #5: 20.5 m Right-of-Way (EA Concept with Clear Zone)





Alternative #27: 21.5 m Right-of-Way

Alternative #28: 21.8 m Right-of-Way

